You are here: Home »

Безопасность

Category Archives: Безопасность

IEC 62734

867519228d1d5325856fc61d710ded0e_LМеждународное общество автоматизации (ISA) сообщило, что специалисты создали стандарт на основе консенсуса, который получил название ANSI / ISA-100.11a-2011 “Беспроводные системы в автоматизации промышленности – управление всеми процессами и остальные способы применения”. Этому стандарту присвоили международный статус. Данное решение было принято  экспертами IEC. Теперь новый документ  имеет код IEC 62734. Но его опубликуют лишь в конце этого года. read more

24 Сентябрь 2014 | | Безопасность, Разное

Комментарии отключены

ГОСТ Р 12.4.184-95 Пояса предохранительные. Общие технические требования. Методы испытаний

1 Область применения

Настоящий стандарт распространяется на предохранительные пояса (далее — пояса), предназначенные для обеспечения безопасности работ на высоте, в том числе на воздушных линиях электропередачи, электрических и атомных станциях, контактных сетях других энергетических и высотных сооружениях, и устанавливает технические требования и методы испытаний.

Требования по безопасности изложены в 5.1-5.3, 5.7, 5.8, 5.10 и 5.12-5.16.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 9.301-86 Единая система защиты от коррозии и старения. Покрытия металлические и неметаллические неорганические. Общие требования

ГОСТ 12.4.115-82 Система стандартов безопасности труда. Средства индивидуальной защиты работающих. Общие требования к маркировке

ГОСТ 166-89 (ИСО 3599-76) Штангенциркули. Технические условия

ГОСТ 427-75 Линейки измерительные металлические. Технические условия

ГОСТ 7328-2001 Меры массы общего назначения и образцовые. Технические условия

ГОСТ 7502-98 Рулетки измерительные металлические. Технические условия

ГОСТ 13837-79 Динамометры общего назначения. Технические условия

ГОСТ 14192-96 Маркировка грузов
3 Определения

В настоящем стандарте применяют следующие термины с соответствующими определениями:

3.1 предохранительный пояс: Средство индивидуальной защиты для снижения вероятности травмирования в случае падения работающего при выполнении работ на высоте.

3.2 безлямочный пояс: Пояс, предусматривающий обхват тела человека только по талии.

3.3 лямочный пояс: Пояс, обхватывающий тело человека по талии, плечам и (или) бедрам.

3.4 ремень: Часть пояса, непосредственно обхватывающая тело человека по талии.

3.5 лямки: Часть пояса, обхватывающая плечи и (или) бедра человека.

3.6 пряжка: Часть пояса, предназначенная для его фиксации на теле человека.

3.7 строп: Часть пояса, включающая фал и карабин и предназначенная для соединения человека с точкой закрепления.

3.8 фал: Гибкий элемент стропа.

3.9 карабин: Элемент стропа для фиксации его в точке закрепления.

3.10 коуш: Металлическая обойма петли на конце фала в месте его соединения с карабином.

3.11 кушак: Часть пояса, закрепленная на ремне, непосредственно прилегающая к телу человека в зоне поясницы.

3.12 амортизатор: Составная неотъемлемая часть пояса или присоединяемая к поясу в необходимых случаях, защищающая от сотрясений и больших нагрузок, возникающих при остановке падающего человека.

3.13 замок: Устройство, состоящее из защелки карабина, воспринимающей усилие руки для раскрытия карабина, и предохранителя, исключающего случайное раскрытие карабина.

ГОСТ 2642.15-97 Огнеупоры и огнеупорное сырье. Метод определения общего углерода

1. ОБЛАСТЬ ПРИМЕНЕНИЯ.

Настоящий стандарт распространяется на огнеупорное сырье, огнеупорные материалы, кроме карбидкремниевых, и устанавливает кулонометрический метод определения общего углерода от 0,03 до 20 %.
2. НОРМАТИВНЫЕ ССЫЛКИ.

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 546-88 (ИСО 431-81) Катоды медные. Технические условия.

ГОСТ 2642.0-86 Огнеупоры и огнеупорное сырье. Общие требования к методам анализа.

ГОСТ 4140-74 Стронций хлористый 6-водный. Технические условия.

ГОСТ 4207-75 Калий железистосинеродистый 3-водный. Технические условия.

ГОСТ 4234-77 Калий хлористый. Технические условия.

ГОСТ 5583-78 (ИСО 2046-73) Кислород газообразный технический и медицинский. Технические условия.

ГОСТ 9147-80 Посуда и оборудование лабораторные фарфоровые. Технические условия.

ГОСТ 9656-75 Кислота борная. Технические условия.
3. ОБЩИЕ ТРЕБОВАНИЯ.

Общие требования к методам анализа и безопасности труда — по ГОСТ 2642.0.
4. КУЛОНОМЕТРИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ ОБЩЕГО УГЛЕРОДА (ПРИ МАССОВОЙ ДОЛЕ ОТ 0,03 ДО 20 %).

4.1. Сущность метода.

Метод основан на сжигании навески пробы в токе кислорода при температуре 1150 — 1200 °С, поглощении выделившегося углекислого газа поглотительным раствором с соответствующим начальным значением рН и дальнейшем измерении на установке кулонометрического титрования, необходимого для воспроизведения начального значения рН количества электричества, которое пропорционально массовой доле углерода в навеске пробы.

4.2. Аппаратура, реактивы и растворы.

Экспресс-анализатор типа АН-29, АН-7529, АУС-7544 со всеми принадлежностями или любого другого типа, обеспечивающий необходимую точность результатов анализа.

Горизонтальная трубчатая печь любого типа, обеспечивающая необходимый нагрев до температуры 1200 °С.

Кислород газообразный технический по ГОСТ 5583.

Трубки огнеупорные муллитокремнеземистые по НД.

Лодочки фарфоровые по ГОСТ 9147, предварительно прокаленные в токе кислорода при температуре 1150-1200 °С до полного выгорания углерода. Прокаленные лодочки сохраняют в эксикаторе, шлиф крышки эксикатора не должен покрываться смазочным веществом.

Калий хлористый по ГОСТ 4234.

Стронций хлористый 6-водный по ГОСТ 4140.

Кислота борная по ГОСТ 9656.

Калий железистосинеродистый 3-водный по ГОСТ 4207.

Медь металлическая по ГОСТ 546 (плавень).

Поглотительный и вспомогательный растворы готовят в соответствии с типом используемой кулонометрической установки.

4.3. Порядок подготовки к проведению анализа.

Прибор готовят к работе в соответствии с инструкцией по эксплуатации и проводят градуировку по стандартным образцам, а для высоких содержаний углерода — по синтетическим смесям или чистым реактивам, например по карбонату кальция марки ос. ч. Для удаления следов углерода из установки перед началом анализа пропускают кислород и прокаливают трубку. Пропускание кислорода и прокаливание трубки проводят до получения постоянного показания прибора. Стрелку индикатора «рН»устанавливают в нулевом положении.

4.4. Проведение анализа.

Навеску материала массой 0,1 — 0,5 г (в зависимости от содержания углерода в пробе) помещают в фарфоровую лодочку и покрывают равномерным слоем фиксированного количества плавня, в качестве плавня используют металлическую медь (отношение масс навесок плавня и пробы составляет 1 : 1).

Для контроля правильности результатов анализа перед началом работы и через каждые 3 — 4 часа во время работы сжигают 2 — 3 навески стандартного образца с известной массовой долей углерода, близкой к анализируемой. Лодочку с навеской и плавнем помещают в рабочую часть печи и сжигают пробу в токе кислорода при температуре (1200 ± 50) °С.

Анализ считают законченным, если показания прибора не меняются в течение 1 мин или изменяются на величину холостого счета прибора.

Проводят контрольное измерение, для чего в прокаленную фарфоровую лодочку помещают соответствующий плавень и сжигают его при рабочей температуре в течение времени, затраченного на сжигание анализируемого материала.

4.5. Обработка результатов.

4.5.1. Массовую долю углерода определяют на числовом табло анализатора вычитанием результата контрольного опыта.

ГОСТ 7030-75 Материалы полевошпатовые и кварц-полевошпатовые для тонной керамики

ПРАВИЛА ПРИЕМКИ

3.1. Кусковые полевошпатовые и кварц-полевошпатовые материалы принимают партиями. Партией считают количество материала одной марки, оформленное одним документом о качестве.

Правила приемки молотых полевошпатовых и кварц-полевошпатовых материалов — по ГОСТ 22871-77.

3.2. Для проверки качества кусковых полевошпатовых и кварц-полевошпатовых материалов от партии отбирают объединенную пробу массой не менее 150 кг.

3.3. При несоответствии результатов испытаний требованиям настоящего стандарта хотя бы по одному из показателей проводят повторные испытания по этим показателям на удвоенных выборке или объеме проб, отобранных от той же партии.

Результаты повторных испытаний распространяются на всю партию.
4. МЕТОДЫ ИСПЫТАНИЙ

4.1. Отбор и подготовка проб для испытаний молотых полевошпатовых и кварц-полевошпатовых материалов — по ГОСТ 22871-77.

4.2. Отбор и подготовку проб для испытаний кусковых полевошпатовых и кварц-полевошпатовых материалов производят следующим образом: от каждой партии отбирают не менее 15 точечных проб из разных, равномерно расположенных точек.

4.2.1. Все точечные пробы соединяют в объединенную пробу.

Объединенная проба подвергается испытанию на определение гранулометрического состава.

После проведения испытания все полученные классы крупности объединяют и дробят по крупности менее 10 мм, перемешивают и методом квартования сокращают до пробы массой не менее 5 кг, затем снова дробят до крупности 1-2 мм, перемешивают и методом квартования сокращают до 400 г.

4.2.2. Полученную пробу очищают от частиц аппаратного железа, которые отмагничивают постоянным магнитом, имеющим на поверхности магнитную индукцию 120-140 мТл.

Для отмагничивания пробу разравнивают тонким слоем на кальке и передвигают, прижимая по всей поверхности пробы, магнит, завернутый в один слой кальки.

Операцию отмагничивания повторяют до полного прекращения налипания частиц к поверхности магнита.

4.2.3. Пробу после отмагничивания измельчают до крупности 0,5 мм, перемешивают и методом квартования сокращают до 100-120 г и снова измельчают до крупности 0,2 мм.

Измельченную пробу опять перемешивают и выделяют навески для химического анализа массой не менее 20 г и для определения качества спека массой не менее 30 г, которые затем истирают до крупности менее 0,063 мм.

Допускается пробу после отмагничивания измельчать сразу до крупности 0,2 мм.

На всех стадиях измельчения должно применяться неметаллическое оборудование, предотвращающее загрязнение пробы аппаратным железом: фарфоровые мельницы с уралитовымп шарами, истиратели с корундовыми дисками, агатовые и фарфоровые ступки и другое аналогичное оборудование.

Оставшуюся часть пробы упаковывают в пакет из плотной бумаги и хранят в течение 2 мес на случай разногласий в оценке качества кусковых полевошпатовых и кварц-полевошпатовых материалов.

4.3. Метод определения гранулометрического состава кусковых полевошпатовых и кварц-полевошпатовых материалов.

4.3.1. Аппаратура

Грохот или сито с сеткой №№ 20 и 200 по ГОСТ 3306-88 и ГОСТ 8478-81.

Весы технические с погрешностью взвешивания не более 0,05% от массы навески.

4.3.2. Проведение испытания

Рассев материала производят на грохоте или сите. Материал подают порциями, не допуская перегрузки сетки.

Рассев считают законченным, если выход подрешетного продукта в течение 1 мин будет составлять менее 1% от массы материала, поданного на сито.

4.3.3. Обработка результатов

Выход материала каждого класса крупности (X) в процентах вычисляют по формуле

где mn — масса материала данного класса крупности, кг;

т — суммарная масса материала всех классов крупности, кг.

4.3.4. Потеря массы материала в процессе испытания, определяемая как разность между массой пробы, взятой для испытания, и суммарной массой материала всех классов крупности, не должна превышать 2% от массы пробы, взятой для испытания.
5. УПАКОВКА, МАРКИРОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

5.1. Молотые полевошпатовые и кварц-полевошпатовые материалы упаковывают в четырехслойные бумажные мешки по ГОСТ 2226-88 или контейнеры.

Масса нетто материала в мешке не должна превышать 50 кг.

Молотые полевошпатовые и кварц-полевошпатовые материалы транспортируют в крытых транспортных средствах.

Кусковые полевошпатовые и кварц-полевошпатовые материалы транспортируют навалом всеми транспортными средствами.

5.2. Молотые полевошпатовые и молотые кварц-полевошпатовые материалы, поставляемые в отдаленные районы и районы Крайнего Севера, упаковывают по ГОСТ 15846-79, кусковые материалы транспортируют навалом.

5.3. На каждый мешок наносят маркировку по ГОСТ 14192-77 с нанесением манипуляционного знака «Боится сырости» и следующих дополнительных обозначений:

марки;

номера партии;

обозначения настоящего стандарта.

5.4. На каждую партию полевошпатового и кварц-полевошпатового материала высылают документ о качестве, в котором должны быть указаны:

наименование предприятия-изготовителя или его товарный знак;

наименование и марка продукции;

номер и дата выдачи документа;

результаты испытаний;

дата отгрузки;

масса партии;

номер партии;

номер вагона;

обозначение настоящего стандарта.

ГОСТ 21234-75 Тальк молотый для керамической промышленности ТУ

ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

2а.1. Тальк не является токсичным продуктом. В воздухе рабочей зоны тальк присутствует в виде аэрозоли фиброгенного воздействия. По степени воздействия на организм человека тальк относится к 3-му классу опасности. Общие санитарно-гигиенические требования к воздуху рабочей зоны при работе с тальком — по ГОСТ 12.1.005-88. Предельно допустимая концентрация (ПДК) талька в воздухе рабочей зоны составляет 4 мг/м3. Периодичность контроля — не реже одного раза в квартал.

2а.2. Общие требования безопасности при работе с тальком — по ГОСТ 12.1.007-76.

2а.3. Тальк не горюч, взрывобезопасен. Общие требования пожарной безопасности при работе с тальком — по ГОСТ 12.1.004-91.

2а.4. Тальк экологически безопасен: стабилен в абиотических условиях, не трансформируется в окружающей среде (не окисляется, не полимеризуется), биологически не распадается.

2а.5. Для защиты атмосферного воздуха от пыли при производстве талька должны быть предусмотрены мероприятия в соответствии с требованиями ГОСТ 17.2.3.01-86 и другой нормативной документации.

2а.6. При транспортировке тальк относится к безопасным грузам по ГОСТ 19433-88.
3. ПРАВИЛА ПРИЕМКИ

3.1. Молотый тальк принимают партиями. Партией считают количество молотого талька одной марки, оформленное одним документом о качестве, в котором должны быть указаны:

наименование предприятия-изготовителя;

наименование и марка продукции;

номер и дата выдачи документа;

масса партии нетто;

номер партии;

результаты испытаний;

обозначение настоящего стандарта.

3.2. Для проверки соответствия качества партии молотого талька требованиям настоящего стандарта отбирают методом случайного отбора каждый 100-й мешок, но не менее 10 мешков от партии.

От талька, упакованного в контейнеры, отбирают каждый контейнер.

Масса объединенной пробы должна быть не менее 3 кг.

3.3. При несоответствии результатов испытаний требованиям настоящего стандарта хотя бы по одному из показателей проводят повторное испытание по этим показателям на удвоенной выборке, отобранной от той же партии.

Результаты повторных испытаний распространяются на всю партию.
4. МЕТОДЫ ИСПЫТАНИЙ

4.1. Отбор и подготовку проб для испытаний проводят от талька, упакованного в мешки и контейнеры по ГОСТ 19730.

4.2. Методы испытаний — по п. 2.1.

Разд. 4. (Измененная редакция, Изм. № 2).
5. МАРКИРОВКА, УПАКОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

5.1. Транспортная маркировка — по ГОСТ 14192.

5.2. На каждом контейнере или мешке должны быть обозначены:

наименование предприятия-изготовителя, товарный знак;

наименование и марка продукции;

номер партии;

масса нетто;

дата изготовления;

обозначение настоящего стандарта.

5.3. Молотый тальк упаковывают в четырехслойные мешки марки НМ по ГОСТ 2226 с массой нетто не более 35 кг или по согласованию с потребителем в специализированные контейнеры для сыпучих грузов по нормативной документации.

5.4. Молотый тальк транспортируют транспортом всех видов в крытых транспортных средствах в соответствии с правилами перевозки грузов, действующих на транспорте данного вида.

Молотый тальк в специализированных контейнерах транспортируют по железной дороге повагонными отправками на открытом подвижном составе в прямом железнодорожном сообщении с соблюдением правил перевозки, действующих на транспорте данного вида.

5.5. Молотый тальк должен храниться в закрытых помещениях раздельно по маркам.

ГОСТ 2642.12-97 Огнеупоры и огнеупорное сырье. Метод определения оксида марганца

1. ОБЛАСТЬ ПРИМЕНЕНИЯ.

Настоящий стандарт распространяется на огнеупорное сырье, материалы и изделия всех типов и устанавливает методы определения оксида марганца (II):

- фотометрический — при массовой доле оксида марганца (II) от 0,05 до 1,0 % для высокомагнезиальных и магнезиально-известковых огнеупоров;

- фотометрический — при массовой доле оксида марганца (II) от 0,03 до 1,0 % для алюмосиликатных и высокомагнезиальных огнеупоров;

- атомно-абсорбционный — при массовой доле оксида марганца (II) от 0,1 до 10 % для всех типов огнеупоров.
2. НОРМАТИВНЫЕ ССЫЛКИ.

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 83-79 Натрий углекислый. Технические условия.

ГОСТ 1277-75 Серебро азотнокислое. Технические условия.

ГОСТ 2642.0-86 Огнеупоры и огнеупорное сырье. Общие требования к методам анализа.

ГОСТ 2642.3-97 Огнеупоры и огнеупорное сырье. Методы определения оксида кремния (IV).

ГОСТ 3118-77 Кислота соляная. Технические условия.

ГОСТ 4197-74 Натрий азотистокислый. Технические условия.

ГОСТ 4199-76 Натрий тетраборно-кислый 10-водный. Технические условия.

ГОСТ 4204-77 Кислота серная. Технические условия.

ГОСТ 4461-77 Кислота азотная. Технические условия.

ГОСТ 4521-78 Ртуть (I) азотнокислая 2-водная. Технические условия.

ГОСТ 6008-90 Марганец металлический и марганец азотированный. Технические условия.

ГОСТ 6552-80 Кислота ортофосфорная. Технические условия.

ГОСТ 6563-75 Изделия технические из благородных металлов и сплавов. Технические условия.

ГОСТ 10484-78 Кислота фтористоводородная. Технические условия.

ГОСТ 20478-75 Аммоний надсерно-кислый. Технические условия.

ГОСТ 20490-75 Калий марганцовокислый. Технические условия.
3. ОБЩИЕ ТРЕБОВАНИЯ.

Общие требования к методам анализа и безопасности труда — по ГОСТ 2642.0.
4. ФОТОМЕТРИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ ОКСИДА МАРГАНЦА (II) (ПРИ МАССОВОЙ ДОЛЕ ОТ 0,05 ДО 1,0 %).

4.1. Сущность метода.

Метод основан на окислении марганца в азотнокислом или сернокислом растворе периодатом калия в присутствии фосфорной кислоты. Оптическую плотность окраски перманганат-ионов измеряют на фотоэлектроколориметре или спектрофотометре при длине волны 530 нм или с помощью желто-зеленого светофильтра.

4.2. Аппаратура, реактивы и растворы.

Спектрофотометр или колориметр электрический лабораторный.

Чашка платиновая № 118-3 по ГОСТ 6563.

Кислота фтористоводородная по ГОСТ 10484.

Кислота азотная по ГОСТ 4461. разбавленная 1 : 1.

Кислота серная по ГОСТ 4204.

Кислота ортофосфорная по ГОСТ 6552.

Калий йоднокислый (периодат калия), твердый.

Марганец металлический по ГОСТ 6008, 99,95 %.

Стандартный раствор оксида марганца (II): 0,7752 г марганца помещают в стакан вместимостью 250 см3, накрывают часовым стеклом и растворяют в 30 см3 раствора азотной кислоты (1 : 1) при нагревании. Затем раствор охлаждают, переводят в мерную колбу вместимостью 1000 см3, доводят водой до метки, перемешивают.

Стандартный раствор имеет массовую концентрацию оксида марганца (II) 0,001 г/см3 (раствор А).

Градуировочный стандартный раствор оксида марганца (II): отбирают пипеткой 50 см3 стандартного раствора оксида марганца (II) (раствор А) в мерную колбу вместимостью 500 см3, доводят водой до метки и перемешивают.

Градуировочный стандартный раствор имеет массовую концентрацию оксида марганца (II) 0,0001 г/см3 (раствор Б).

Для приготовления стандартного раствора оксида марганца (II) допускается использовать калий марганцовокислый по ГОСТ 20490.

4.3. Проведение анализа.

4.3.1. Навеску пробы массой 0,5 г помещают в платиновую чашку, смачивают несколькими каплями воды, прибавляют 5-6 капель азотной или серной кислоты, 5 — 10 см3 раствора фтористо-водородной кислоты, осторожно нагревают до выделения бурых паров оксидов азота (или белых паров серной кислоты). Остаток обрабатывают 50 — 60 см3 воды, подкисляют 10 см3 азотной кислоты и нагревают до растворения на песчаной бане. Раствор охлаждают, переводят в мерную колбу вместимостью 100 см3, доводят водой до метки и перемешивают.

В стакан вместимостью 250 см3 отбирают аликвотную часть 20 — 50 см3 исходного раствора, в котором должно быть не более 0,001 г оксида марганца (II). Прибавляют 10 см3 азотной кислоты и 10 см3 фосфорной кислоты, добавляют 0,3 — 0,4 г периодата калия, нагревают 5 — 10 мин при температуре 90 °С до возникновения устойчивой окраски. После охлаждения окрашенный раствор переводят в мерную колбу вместимостью 100 см3, доводят до метки водой и перемешивают.

Измеряют оптическую плотность при длине волны 530 нм или при применении желто-зеленого светофильтра. Раствором сравнения служит раствор контрольного опыта, содержащий все применяемые реактивы.

Массу оксида марганца (II) в граммах находят по градуировочному графику, который строят в тех же условиях.

4.3.2. Для построения градуировочного графика в семь из восьми колб вместимостью по 100 см3 отмеряют 1,0; 2,0; 3,0; 4,0; 6,0; 8,0; 10,0 см3 градуировочного раствора оксида марганца (II) (раствор Б), прибавляют в каждую колбу 10 см3 азотной кислоты и 10 см3 фосфорной кислоты. Растворы нагревают до кипения и затем окисляют периодатом калия при нагревании. Далее поступают, как указано в 4.3.1. По измеренным величинам оптических плотностей и соответствующим им массам оксида марганца (II) в граммах строят градуировочный график.

4.4. Обработка результатов.

4.4.1. Массовую долю оксида марганца (II) X, %, вычисляют по формуле

(1)

где т — масса оксида марганца (II), найденная по градуировочному графику, г;

V — объем исходного раствора, см3;

m1 — масса навески, г;

V1 — объем аликвотной части раствора, см3.

ГОСТ 25535-82 Изделия из стекла. Методы определения термической стойкости

Несоблюдение стандарта преследуется по закону

Настоящий стандарт устанавливает методы определения термической стойкости изделий из стекла (далее — термостойкости) с термостойкостью до 90 °С (метод А) и свыше 90 °С (метод Б).

Сущность методов заключается в определении стойкости нагретых изделий из стекла к резкому изменению температуры при охлаждении в воде.

Испытания по методам А и Б проводят при однократном охлаждении нагретых до заданной температуры изделий из стекла и многократном охлаждении нагретых с постепенно возрастающей разностью температур изделий из стекла до повреждения одного, заданного количества или всех изделий из стекла.

Настоящий стандарт не распространяется на стеклянную тару и изделия из стекла, для которых установлены методы испытаний термостойкости с учетом специальных условий их применения.

Стандарт полностью соответствует СТ СЭВ 3351-81.

1. МЕТОД ОТБОРА ОБРАЗЦОВ

1.1. Порядок отбора и количество образцов для испытания при однократном охлаждении изделий устанавливают в нормативно-технической документации на конкретные виды изделий из стекла.

1.2. Порядок отбора образцов для испытания при многократном охлаждении изделий устанавливают в нормативно-технической документаци на конкретные виды изделий из стекла; общее количество образцов должно быть не менее 10 шт.

1.3. Для испытания отбирают образцы, не подвергавшиеся испытаниям, связанным с механическим или термическим воздействием.

1.4. Перед испытанием образцы выдерживают не менее 30 мин в помещении с температурой не ниже 18 °С.

2. АППАРАТУРА

2.1. Резервуар с горячей водой, который должен иметь приток и слив воды, приспособления для нагревания, перемешивания и обеспечения отклонения температуры от заданной не более 1 °С; не допускается непосредственное соприкосновение корзин с изделиями из стекла с нагревательными устройствами.

Объем воды в резервуаре должен превышать общий объем испытуемых в один прием образцов не менее чем в два раза.

Общий объем образцов определяют суммой объемов отдельных образцов, при этом за объем образца принимают объем пространства, занимаемого образцом, а для полого изделия, включая его внутреннюю полость.

2.2. Электропечь с принудительной циркуляцией и регулированием температуры воздуха, обеспечивающим отклонение от заданной температуры не более 5 °С и не более ± 1 % в течение всего испытания.

2.3. Резервуар с холодной водой с притоком и сливом воды. Отклонение температуры от заданной в резервуаре не должно превышать 1 °С.

Объем воды в резервуаре с холодной водой должен превышать общий объем одновременно испытуемых образцов не менее, чем в 5 раз.

2.4. Приборы для измерения температуры, обеспечивающие точность измерения ± 1 °С.

2.5. Корзина для образцов с крышкой, фиксирующей устойчивое положение образцов при переносе из резервуара с горячей водой или электропечи в резервуар с холодной водой.

2.6. Щипцы или другое приспособление для переноса образцов из резервуара с горячей водой или электропечи в резервуар с холодной водой.

3. ПРОВЕДЕНИЕ ИСПЫТАНИЯ

3.1. Испытания проводят в помещении при температуре не ниже 18 °С.

3.2. Метод А, с однократным охлаждением нагретых образцов

3.2.1. Образцы нагревают в резервуаре с горячей водой.

3.2.2. Разность температур воды в резервуарах с горячей и холодной водой должна быть не менее установленной в нормативно-технической документации на конкретные виды изделий из стекла.

3.2.3. При одновременном испытании нескольких образцов их помещают в корзину, открытые полые изделия устьем вверх, фиксируют положение и погружают в резервуар с горячей водой.

3.2.4. Образцы не должны соприкасаться друг с другом и их верхний край должен находиться не менее 5 см ниже уровня воды.

3.2.5. Продолжительность выдержки образцов в резервуаре с горячей водой определяют из расчета 1,5 мин на 1 мм толщины образца (наибольшей), но не менее 10 мин.

3.2.6. По окончании выдержки корзину с образцами переносят в резервуар с холодной водой, открытые полые изделя переносят наполненные горячей водой. Время переноса корзины с образцами из одного резервуара в другой (10±2) с. Время выдержки образцов в резервуаре при охлаждении 30 — 40 с.

3.2.7. После погружения в резервуар с холодной водой открытые полые изделия должны оставаться заполненными горячей водой.

Температура воды в резервуаре с холодной водой должна быть от 5 до 27 °С.

3.2.8. После испытания образцы вынимают из корзины, из полых образцов выливают воду и осматривают их невооруженным глазом.

3.3. Метод А, с многократным охлаждением нагретых образцов

3.3.1. Испытания проводят по пп. 3.2.1 — 3.2.8.

3.3.2. Нагревание и охлаждение образцов многократно повторяют, при этом температуру горячей воды в резервуаре повышают на 5 или 10 °С при каждом повторении.

3.3.3. Поврежденные образцы отбирают и в дальнейших испытаниях не используют.

3.3.4. Нагревание и последующее охлаждение проводят до повреждения заданного числа образцов.

3.4. Метод Б, с однократным охлаждением нагретых образцов

3.4.1. Образцы нагревают в электропечи.

3.4.2. Разность температур в электропечи и воды в резервуаре с холодной водой должна быть указана в нормативно-технической документации на конкретные виды изделий из стекла.

3.4.3. Если испытывают несколько образцов одновременно, образцы помещают в корзину, а открытые полые образцы так, чтобы при погружении в резервуар с холодной водой они наполнились водой. Корзину с образцами или отдельные образцы помещают в электропечь так, чтобы образцы друг с другом не соприкасались.

3.4.4. Продолжительность выдержки образцов в печи определяют из расчета 6 мин на 1 мм толщины образца (наибольшей), но не менее 15 мин. Отсчет продолжительности выдержки образцов в печи начинают с момента достижения заданной температуры нагрева.

3.4.5. По окончании выдержки корзину с образцами или отдельные образцы вынимают из печи и переносят в резервуар с холодной водой. Время переноса образцов должно быть (5±1) с, считая с момента извлечения образцов из печи до момента их погружения в резервуар с холодной водой до заданной глубины.

3.4.6. При извлечении отдельных образцов из печи печь не должна быть открыта более 5 с. Перед извлечением следующего образца следует подождать не менее 3 мин, чтобы температура в печи установилась до заданной.

3.4.7. Способ и глубина погружения образцов в резервуар с холодной водой должны быть указаны в нормативно-технической документации на конкретные виды изделий из стекла.

3.4.8. Температура воды в резервуаре с холодной водой должна быть от 5 до 27 °С.

3.4.9. Через 30-40 с после погружения в резервуар с холодной водой образцы вынимают и осматривают невооруженным глазом.

3.5. Метод Б, с многократным охлаждением нагретых образцов

3.5.1. Испытания проводят по пп. 3.4.1 — 3.4.9.

3.5.2. Нагревание и охлаждение образцов многократно повторяют, при этом температуру в печи повышают на 5 или 10 °С при каждом повторении.

3.5.3. Поврежденные образцы отбирают и в дальнейших испытаниях не используют.

3.5.4. Нагревание и последующее охлаждение проводят до повреждения заданного числа образцов.

4. ОБРАБОТКА РЕЗУЛЬТАТОВ

4.1. По результатам осмотра устанавливают количество повреж­ден­ных образцов.

4.2. Образец считают поврежденным, если после извлечения его из резервуара с холодной водой он имеет трещины, сколы или полностью разрушился.

В число поврежденных образцов включают образцы, поврежденные при погружении в нагревательную среду, а также во время нагревания.

4.3. Результаты испытания записывают в протокол, который должен содержать:

дату и место отбора образцов;

характеристику испытуемых образцов (наименование, вид, размер или вместимость и т. п.);

количество испытанных образцов;

общее количество изделий, из которых был проведен отбор образцов, если это известно;

условия проведения испытания (метод испытания, время выдержки в печи или резервуаре);

результаты испытания;

дату проведения испытания;

обозначение настоящего стандарта.

4.4. При испытании изделий по методам А и Б с многократным охлаждением нагретых образцов устанавливают количество образцов, поврежденных при каждом испытании, с указанием соответствующих температур нагревающей и охлаждающей сред и разности температур этих сред. Количество поврежденных образцов выражают также в процентах от общего числа испытуемых образцов.

4.5. Если испытания проводят до повреждения всех испытуемых образцов, указывают значения по пп. 4.4 и вычисляют среднее арифметическое разности температур, при которых образцы повреждены.

ГОСТ 1598-75* Изделия огнеупорные шамотные для кладки доменных печей

Изделия предъявляются к приемке партиями. Каждая партия должна состоять из изделий одного назначения, сопровождаемая одним документом о качестве, содержащим:

товарный знак или товарный знак и наименование предприятия-изготовителя;

марку изделия;

количество изделий в партии по номерам;

порядковый номер партии;

дату выпуска;

результаты лабораторных испытаний;

массу партии;

обозначение настоящего стандарта.

Масса партии устанавливается не более 140 т.
4.2. Правила приемки — по ГОСТ 8179-85 со следующими дополнениями.

4.2.1. Для проверки соответствия качества изделий требованиям настоящего стандарта проводят выборку по плану контроля номер 2.

Определение массовой доли Al2O3, Fe2O3, огнеупорности и температуры начала размягчения производят от каждой пятой партии, остальных показателей — от каждой партии.

Для определения массовой доли Al2O3, Fe2O3, и огнеупорности отбирают среднюю пробу от всех образцов, подвергшихся испытанию на предел прочности при сжатии.

4.2.2. Для шлифованных изделий всех номеров марок ШПД-42 и ШПД-41 отклонения по толщине и длине, а для номеров 5, 6 и по ширине должны быть только в одну сторону (например, плюс по толщине и минус по длине или плюс по толщине и плюс по длине).

5. МЕТОДЫ ИСПЫТАНИЙ

5.1. Массовую долю Al2O3, Fe2O3 определяют по ГОСТ 2642.0-86, ГОСТ 2642.4-86 и ГОСТ 2642.5-86 или другими методами, обеспе­чивающими требуемую точность.

(Измененная редакция, Изм. № 1).

5.2. Огнеупорность определяют по ГОСТ 4069-69.

5.3. Температуру начала размягчения определяют по ГОСТ 4070-83.

5.4. Дополнительную линейную усадку определяют по ГОСТ 5402-81.

5.5. Открытую пористость определяют по ГОСТ 2409-80 или по ГОСТ 25714-83.

5.6. Предел прочности при сжатии определяют по ГОСТ 4071-80 или по ГОСТ 25714-83.

5.6а. Определение открытой пористости и предела прочности при сжатии по ГОСТ 25714-83 производят на удвоенном количестве образцов.

5.7. Размеры изделий проверяют металлической линейкой (ГОСТ 427-75) с ценой деления шкалы 1 мм, штангенциркулем (ГОСТ 166-80) или соответствующими шаблонами, обеспечивающими заданную точность измерения.

5.8. Кривизну изделий проверяют на поверочной плите (ГОСТ 10905-86) при помощи щупа шириной 10 мм и толщиной, превышающей на 0,1 мм установленную норму кривизны. Щуп не должен входить в зазор между плитой и изделием. При определении кривизны изделие слегка прижимают к плите и щуп вводят в зазор скольжением по плите без применения усилий.

5.9. Глубину отбитости углов и ребер определяют по ГОСТ 15136-78.

5.10. Диаметр выплавки замеряют металлической линейкой (ГОСТ 427-75) с ценой деления шкалы 1 мм. Диаметр выплавки определяют по диаметру впадины, образуемой выплавкой, в месте максимальной ширины.

5.11. Ширину посечек и трещин определяют при помощи измерительной лупы (ГОСТ 25706-83). Измерительную лупу располагают таким образом, чтобы ее шкала была перпендикулярна посечке или трещине. Между измерительной шкалой и поверхностью изделия помещают полоску белой бумаги, которую располагают вдоль шкалы вплотную к ее делениям. Длину посечек и трещин замеряют металлической линейкой (ГОСТ 427-75) с ценой деления шкалы 1 мм.

5.12. Строение в изломе определяют визуально.

6. МАРКИРОВКА, УПАКОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

6.1. Маркировку изделий производят по ГОСТ 1502-72.

6.2. Для шлифованных изделий марок ШПД-42 и ШПД-41 при маркировке дополнительно наносят несмываемой краской на боковой плоскости пакета и на упаковочном материале знак отклонения размера для номеров:

1, 2, 9, 10 — по длине (Д) и толщине (Т);

5, 6 — по ширине (Ш) и толщине (Т);

7, 8 — по толщине (Т).

Например, шлифованное изделие номер 2 с минусовым отклонением по длине и плюсовым отклонением по толщине маркируют «-Д+Т»; изделие номер 5 с минусовым отклонением по ширине и плюсовым отклонением по толщине маркируют «-Ш+Т»; изделие номер 7 с плюсовым отклонением по толщине маркируют «+Т».

(Измененная редакция, Изм. № 1).

6.1.1. Транспортная маркировка — по ГОСТ 14192-77.

(Измененная редакция, Изм. № 2).

6.3. Упаковка, транспортирование и хранение изделий проводится по ГОСТ 24717-81 с дополнениями.

Упаковка изделий всех марок проводится по ГОСТ 24717-81 в транспортные пакеты по ГОСТ 21929-76. Каждый пакет марок ШПД-42 и ШПД-41 дополнительно упаковывают в чехлы из картона по ГОСТ 7933-75 или плотную водонепроницаемую бумагу по ГОСТ 8828-75.

Пакетирование в транспортные пакеты изделий всех марок проводится по ГОСТ 21929-76 при помощи средств скрепления по ГОСТ 21650-76 на плоских поддонах по ГОСТ 9078-84. Формирование пакетов на плоских поддонах — по ГОСТ 26663-85. Масса пакета — по ГОСТ 24717-81, габаритные размеры пакета — по ГОСТ 24597-81. Габариты поддона по ГОСТ 9078-84.

По согласованию изготовителя с потребителем допускается упаковывание изделий в пакеты на поддонах с обязательной сплошной защитой наружных углов и ребер картоном или плотной бумагой.

Транспортирование изделий осуществляется в соответствии с правилами перевозки грузов и техническими условиями погрузки и крепления грузов, действующими на соответствующем виде транспорта.

ГОСТ Р 51136-98 Стекла защитные многослойные ТУ

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий стандарт распространяется на стекло защитное многослойное (далее — стекло), предназначенное для защиты жизни человека, обеспечения безопасности и надежности хранения и транспортирования материальных ценностей. Стекло предназначено для использования на транспортных средствах, в административных, общественных и жилых зданиях, где есть необходимость в защите жизни человека и материальных ценностей. Стандарт может быть использован для целей сертификации.
2 НОРМАТИВНЫЕ ССЫЛКИ

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 111-90 Стекло листовое. Технические условия

ГОСТ 166-89 Штангенциркули. Технические условия

ГОСТ 427-75 Линейки измерительные металлические. Технические условия

ГОСТ 5533-86 Стекло листовое узорчатое

ГОСТ 5727-88 Стекло безопасное для наземного транспорта. Общие технические условия

ГОСТ 6507-90 Микрометры. Технические условия

ГОСТ 7481-78 Стекло армированное листовое

ГОСТ 7502-89 Рулетки измерительные металлические. Технические условия

ГОСТ 7721-89 Источники света для измерений цвета. Типы. Технические требования. Маркировка

ГОСТ 9438-85 Пленка поливинилбутиральная клеящая. Технические условия

ГОСТ 14192-96 Маркировка грузов

ГОСТ 15150-69 Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействий климатических факторов внешней среды

ГОСТ 15151-69 Машины, приборы и другие технические изделия для районов с тропическим климатом. Общие технические условия

ГОСТ 25706-83 Лупы. Типы, основные параметры. Общие технические требования

ГОСТ 27902-88 Стекло безопасное для автомобилей, тракторов и сельскохозяйственных машин. Определение оптических свойств

ГОСТ 27904-88 Стекло безопасное для автомобилей, тракторов и сельскохозяйственных машин. Определение светостойкости, температуростойкости и влагостойкости

ГОСТ Р 50460-92 Знак соответствия при обязательной сертификации. Форма, размеры и технические требования

ГОСТ 50744-95 Бронеодежда. Классификация и общие технические требования

ГОСТ 50941-96 Кабина защитная. Общие технические требования и методы испытаний
3 ОПРЕДЕЛЕНИЯ

В настоящем стандарте применены следующие термины:

Стекло защитное многослойное — склеенные между собой полимерными материалами в различном сочетании пластины силикатного стекла, силикатного с органическим стеклом, поликарбонатом или упрочняющими пленками. Представляет собой многослойный блок, обладающий защитными свойствами.

Ударостойкое стекло — защитное стекло, выдерживающее многократный удар свободно падающего тела с нормируемыми показателями.

Устойчивое к пробиванию стекло — защитное стекло, выдерживающее определенное количество ударов обухом и лезвием топора, наносимых с нормируемыми показателями.

Пулестойкое стекло — защитное стекло, выдерживающее воздействие огнестрельного оружия и препятствующее сквозному проникновению поражающего элемента.
4 КЛАССИФИКАЦИЯ

4.1 Ударостойкое стекло

Ударостойкое стекло в зависимости от его характеристик подразделяют на классы защиты А1, А2 или A3.

Ударостойкое стекло в зависимости от температуры применения может быть двух видов:

- используемое при температуре выше 0 °С;

- используемое при температуре ниже 0 °С и прошедшее испытания на морозостойкость. В этом случае к обозначению класса стекла добавляют буквы «ХЛ» (морозостойкое), например: A1XЛ.

4.2 Устойчивое к пробиванию стекло

Устойчивое к пробиванию стекло подразделяют на классы защиты Б1, Б2, Б3.

Устойчивому к пробиванию стеклу, прошедшему испытания на морозостойкость, к обозначению класса добавляют буквы «ХЛ», например: Б1ХЛ.

4.3 Пулестойкое стекло (бронестекло)

Пулестойкое стекло в зависимости от его стойкости при обстреле из определенного вида оружия определенными боеприпасами подразделяют на классы защиты 1, 2, 2а, 3, 4, 5, 5а, 6, 6а.

4.3.3 Пулестойкому стеклу, предназначенному для использования при температурах ниже 0 °С и прошедшему испытание на морозостойкость, к обозначению добавляют буквы «ХЛ», например: 1ХЛ.
5 ОБЩИЕ ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

5.1 Общие требования

Стекло представляет собой композицию из нескольких силикатных стекол, склеенных между собой полимерными или другими склеивающими материалами. В зависимости от защитных требований допускается в сочетании с силикатными стеклами использование органических стекол, поликарбоната, упрочняющих пленок и других полимерных материалов.

Стекла должны изготавливаться с учетом требований настоящего стандарта и технических условий на конкретные изделия по нормативной документации предприятия-изготовителя, утвержденной в установленном порядке.

5.2 Основные размеры

5.2.1 Размеры и предельные отклонения размеров должны соответствовать требованиям нормативной документации на конкретные изделия и не превышать значений, указанных в таблице 1.

5.2.2 Номинальная толщина, количество слоев и композиционный состав стекла должны обеспечивать защиту от заданного уровня воздействия и соответствовать нормативной документации на конкретное изделие.

5.2.2.1 Отклонение по толщине изделия в сторону уменьшения допускается не более 0,5 мм.

5.2.2.2 При замене вида (марки) склеивающих материалов и/или марки упрочняющей пленки необходимо провести повторные испытания по 5.3.2-5.3.9.

При изменении номинальной толщины неорганического или органического стекла или их перестановке, а также при изменении толщины склеивающих и/или упрочняющих пленок необходимо провести повторные испытания по 5.3.7-5.3.9.

При внедрении в процесс производства нового оборудования, влияющего на технологические параметры (время, температура, давление, химический состав), или изменении технологического процесса необходимо провести повторные испытания по 5.3.2-5.3.9.

ГОСТ 2642.11-97 Огенупоры и огнеупорное сырье. Метод определения оксидов калия и натрия

1. ОБЛАСТЬ ПРИМЕНЕНИЯ.

Настоящий стандарт распространяется на огнеупорное сырье, огнеупорные материалы (массы, мертели, порошки) и изделия алюмосиликатные, кремнеземистые, глиноземистые, глиноземо-известковые, магнезиальные и магнезиально-известковые и устанавливает пламенно-спектрометрический метод определения оксидов калия и натрия при их массовой доле от 0,1 до 5 %.
2. НОРМАТИВНЫЕ ССЫЛКИ.

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 2642.0-86 Огнеупоры и огнеупорное сырье. Общие требования к методам анализа.

ГОСТ 3118-77 Кислота соляная. Технические условия.

ГОСТ 4145-74 Калий серно-кислый. Технические условия.

ГОСТ 4166-76 Натрий серно-кислый. Технические условия.

ГОСТ 4204-77 Кислота серная. Технические условия.

ГОСТ 4233-77 Натрий хлористый. Технические условия.

ГОСТ 4234-77 Калий хлористый. Технические условия.

ГОСТ 6563-75 Изделия технические из благородных металлов и сплавов. Технические условия.

ГОСТ 10484-78 Кислота фтористоводородная. Технические условия.
3. ОБЩИЕ ТРЕБОВАНИЯ.

Общие требования к методу анализа и безопасности труда — по ГОСТ 2642.0.
4. ПЛАМЕННО-СПЕКТРОМЕТРИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ ОКСИДОВ КАЛИЯ И НАТРИЯ (ПРИ МАССОВОЙ ДОЛЕ ОТ 0,1 ДО 5 %).

4.1. Сущность метода.

Метод основан на возбуждении атомов калия и натрия в пламени пропан-бутан-воздух, ацетилен-воздух или природный газ-воздух и измерении интенсивности характерного излучения определяемых элементов: калия — при длине волны 766,5 нм и натрия — при длине волны 589,0 нм.

Взаимное влияние щелочных элементов устраняется введением в раствор соли цезия.

4.2. Аппаратура, реактивы и растворы.

Фотометр пламенный или атомно-абсорбционный спектрофотометр.

Кислота серная по ГОСТ 4204, разбавленная 1 : 1.

Кислота фтористоводородная по ГОСТ 10484.

Кислота соляная по ГОСТ 3118, разбавленная 1 : 1.

Натрий сернокислый безводный по ГОСТ 4166.

Натрий хлористый по ГОСТ 4233.

Калий сернокислый по ГОСТ 4145.

Калий хлористый по ГОСТ 4234.

Цезий хлористый по нормативной документации или другие соли цезия, раствор с массовой долей 1,5 %.

Чашки платиновые по ГОСТ 6563 или из стеклоуглерода.

Стандартный раствор оксида калия: 1,583 г хлористого калия, предварительно прокаленного при температуре 500 °С до постоянной массы, помещают в стакан вместимостью 400 см3 и растворяют в 200 см3 воды. Переводят раствор в мерную колбу вместимостью 1000 см3, доводят водой до метки и перемешивают.

1 см3 раствора содержит 0,001 г оксида калия (раствор А).

Стандартный раствор оксида натрия: 1,886 г хлористого натрия, предварительно прокаленного при температуре 500 °С до постоянной массы, помещают в стакан вместимостью 400 см3 и растворяют в 200 см3 воды. Раствор переводят в мерную колбу вместимостью 1000 см3, доводят водой до метки и перемешивают.

1 см3 раствора содержит 0,001 г оксида натрия (раствор А).

Градуировочный стандартный раствор: по 25 см3 стандартных растворов оксидов калия и натрия (растворы А) помещают в мерную колбу вместимостью 250 см3, доводят водой до метки и перемешивают.

1 см3 раствора содержит 0,0001 г оксидов калия и натрия (раствор Б).

Для приготовления стандартных растворов оксидов калия и натрия допускается использовать сернокислые соли калия и натрия, предварительно высушенные при температуре (100 ± 5) °С до постоянной массы, в количестве 2,2918 г сернокислого натрия и 1,8499 г сернокислого калия и далее вести приготовление стандартных растворов А и Б, как описано выше.

4.3. Проведение анализа.

Навеску материала 0,2 г (при массовой доле оксидов калия или натрия до 0,5 %) и 0,1 г (при массовой доле этих оксидов свыше 0,5 %) помещают в платиновую чашку, смачивают водой, прибавляют 3 см3 серной кислоты, разбавленной 1 : 1, 10 — 15 см3 фтористоводородной кислоты и ведут растворение при слабом нагреве до разложения силикатов. Выпаривают до влажных солей, затем снова приливают 5 см3 раствора фтористоводородной кислоты и выпаривают раствор до прекращения выделения паров серного ангидрида.

К сухому остатку прибавляют 5 см3 соляной кислоты, разбавленной 1 : 1, нагревают, приливают 25 — 30 см3 горячей воды и снова нагревают до растворения основной массы солей. Раствор охлаждают, переносят в мерную колбу вместимостью 100 см3, приливают 4 см3 раствора соли цезия, доводят водой до метки и перемешивают. Если растворы мутные, их фильтруют через сухой фильтр «синяя лента», отбрасывая первые порции фильтрата.

При массовой доле оксидов калия и натрия 1,5 — 3,0 % для анализа отбирают аликвотную часть раствора 25 см3 в мерную колбу вместимостью 50 см3, а свыше 3,0 % — в колбу вместимостью 100 см3.

Полученные растворы вводят в пламя измерительного прибора и измеряют интенсивность излучения калия при длине волны 766,5 нм и натрия при длине волны 589,0 нм.

Процесс фотометрирования для каждого раствора проводят дважды и берут среднее значение интенсивности излучения. При смене растворов систему распыления промывают водой.

Для внесения в результат анализа поправки на содержание оксидов калия и натрия в реактивах через все стадии анализа проводят контрольный опыт. Содержание оксидов калия и натрия находят по градуировочному графику.

Допускается проводить определение оксидов калия и натрия по методу ограничивающих растворов.

4.4. Построение градуировочного графика.

В мерные колбы вместимостью 100 см3 отбирают аликвотные части градуировочного стандартного раствора Б: 1,0; 2,5; 5,0; 7,5; 10,0; 12,5; 15,0 см3, прибавляют по 5 см3 соляной кислоты, разбавленной 1 : 1, по 4 см3 раствора соли цезия, доводят до метки водой, перемешивают и измеряют интенсивность полученных растворов, как указано в 4.3.

Контрольный опыт проводят в соответствии с 4.3 без добавления градуировочного стандартного раствора оксидов калия и натрия.

По найденным значениям интенсивности излучения растворов, за вычетом значения интенсивности излучения раствора контрольного опыта и соответствующим им массам оксидов калия или натрия, строят градуировочный график.

4.5. Обработка результатов.

4.5.1 Массовую долю оксидов калия или натрия X, %, вычисляют по формуле

(1)

где т — масса оксида калия или оксида натрия, найденная по градуировочному графику, г;

m1 — масса навески, г;

V — объем исходного раствора, см3;

V1 — объем аликвотной части раствора, см3.