You are here: Home »

нормативные документы

Tag Archives: нормативные документы - Page 23

ГОСТ Р 50009-92 Совместимость технических средств охранной, пожарной и охранно-пожарной сигнализации

ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Требования, нормы и методы испытаний, установленные настоящим стандартом, предназначены для обеспечения проверки соответствия ТС требованиям помехоустойчивости к воздействию ЭМП и регламентирования уровня ИРП, создаваемых самими ТС.

1.2. ТС должны поставляться на испытания с технической документацией н вспомогательным оборудованием, необходимым для его нормального функционирования.

1.3. Испытания опытных образцов и серийно выпускаемых ТС являются обязательной частью государственных, приемочных, квалификационных, сертификационных и периодических испытаний, предусмотренных ГОСТ 15.001 и ГОСТ 29037 или другими государственными стандартами и нормативно-техническими документами, регламентирующими порядок проведения испытаний.

1.4. Приемочные и сертификационные испытания проводят испытательные центры, аккредитованные в установленном порядке.
1.6. Обозначение норм и методов испытаний состоит из двух букв и цифры.

Первая буква характеризует регламентируемую характеристику ТС:

У — устойчивость к воздействию ЭМП;

И — излучение (кондукция) ИРП в провода, проводящие конструкции, окружающее пространство при работе ТС.

Вторая буква обозначает способ распространения, передачи или проникновения помех:

К — кондуктивное распространение (передача, распространение, проникновение по проводам и проводящим конструкциям);

П — пространственное распространение (передача, излучение или проникновение по полю).

ГОСТ Р 50009-92 С. 3

Цифра обозначает порядковый номер соответствующей регламентируемой характеристики ТС.

1.7. В стандарты, ТЗ и ТУ на ТС должны быть внесены требования по электромагнитной совместимости согласно настоящему стандарту. Выбор норм, методов испытаний и степеней жесткости осуществляют лица, разрабатывающие, согласовывающие и утверждающие ТЗ или ТУ на ТС в соответствии с ГОСТ 29280.

1.8. В инструкцию по эксплуатации ТС должно быть внесено предупреждение пользователя о том, что качество функционирования ТС не гарантируется, если уровень ЭМП в месте эксплуатации будет превышать уровни, установленные в ТЗ или ТУ на ТС.

1.9. В инструкцию по эксплуатации ТС вносят сведения об уровне и характере помех, создаваемых ТС.

1.10. После получения сертификата в порядке, установленном в РД 50-697, изготовитель должен нанести на ТС знак соответствия по ГОСТ 28690.
МЕТОДЫ ИСПЫТАНИЙ

3.1. Общие положения

3.1.1. Климатические условия испытаний — по ГОСТ 15150, если иное не оговорено в ТУ на ТС.

3.1.2. При проведении испытаний ТС на устойчивость к ЭМП уровень помех в помещении не должен оказывать влияние на результаты испытаний; при проведении измерений напряжения (напряженности поля) ИРП, создаваемых ТС, значение напряжения (напряженности поля) посторонних помех на каждой частоте измерений, полученное при выключенном испытуемом техническом средстве (ИТС), должно быть ниже нормируемого значения не менее чем на 6 дБ.

Допускается проводить измерения ИРП при более высоком уровне посторонних помех, если суммарное значение помех, создаваемых ИТС, и посторонних радиопомех не превышает нормы.

3.1.3. При испытаниях выбирают режимы работы ИТС, обеспечивающие максимальную восприимчивость к ЭМП и максимальный уровень создаваемых ИРП.

3.1.4. Измерения ИРП проводят на частотах, на которых наблюдаются максимальные уровни радиопомех. Для этого перед началом измерений, плавно перестраивая измеритель радиопомех в пределах нормированной полосы частот, отмечают эти частоты. При большом их числе выбирают не менее 10 частот с наибольшими уровнями радиопомех.

3.1.5. При испытаниях расположение и электрическое соединение ТС, входящих в состав ПТС, должны соответствовать условиям, приведённым в технической документации на это средство.

3.1.6. Для проведения испытаний применяют средства измерений, имеющие свидетельства о поверке. Используемые для испытаний нестандартные средства измерений должны быть аттестованы по ГОСТ 8.326, а испытательное оборудование — по ГОСТ 24555.

3.1.7. Отбор образцов для испытаний проводят: для сертификационных испытаний — по ГОСТ 29037; для испытаний ТС серийного производства — в соответствии с ТУ на ТС; для испытаний опытных образцов — в соответствии с ТЗ на разработку (модернизацию).

3.1.8. Комплектность представленных на испытания ТС должна обеспечивать возможность всесторонней оценки испытываемых ТС и соответствовать оговоренной в технической документации.

3.1.9. Оснастку и приспособления, необходимые для проведения испытаний, представляет предприятие-изготовитель ТС в объеме, согласованном с испытательным центром.

3.1.10. Испытания ТС на устойчивость к воздействию ЭМП проводят по программе испытаний, в которой должны быть указаны:

метод испытаний и степень жесткости;

полярность импульсных помех (необходимы обе полярности);

внутренний или внешний запуск испытательного генератора;

длительность испытаний; количество воздействий импульсных помех;

критерий качества функционирования ИТС;

режимы работы ИТС;

цепи ИТС, подлежащие проверке;

последовательность подачи помех на проверяемые цепи или ИТС.

3.1.11. Если отсутствуют источники необходимых для работы ИТС сигналов, они могут быть заменены имитаторами, и нестандартным оборудованием, аттестованным в установленном порядке.

3.1.12. Результаты испытаний оформляют протоколами.

3.2. Испытания на устойчивость к воздействию импульсов напряжения большой энергии и импульсов напряжения длительностью 100 нс и длительностью фронта 10-35 нс (УК 1)

3.2.1. Испытания на устойчивость к воздействию импульсов напряжения большой энергии проводят в соответствии с ГОСТ Р 50007.

3.2.2. Испытания на устойчивость к воздействию импульсов напряжения длительностью 100 нс и длительностью фронта 10-35 нс проводят в соответствии с ГОСТ 29156.

3.3. Испытания на устойчивость к воздействию наносекундных импульсных помех и пачек импульсов напряжения длительностью 100 нс и длительностью фронта 10-35 нс (УК 2)

3.3.1. Испытания на устойчивость к воздействию наносекундных импульсных помех и пачек импульсов напряжения длительностью 100 нс и длительностью фронта 10-35 нс проводят в соответствии с ГОСТ 29156.

3.4. Испытания на устойчивость к воздействию кратковременных (длительных) прерываний напряжения питания в сети переменного тока (УК 3, УК 4)

3.4.1. Испытательный генератор (ИГ)

Упрощенная схема ИГ приведена на черт. 3. Характеристики ИГ при работе на активную нагрузку 50 Ом должны быть следующими:

динамический диапазон дискретного изменения длительности прерывания от 1 до 99 полупериодов частоты 50 Гц;

динамический диапазон дискретного изменения паузы между прерываниями напряжения от 1 до 999 полупериодов частоты 50 Гц;

минимальный шаг дискретного изменения длительности (паузы) составляет половину периода частоты 50 Гц;

начало и окончание формирования прерывания напряжения совпадает с фазой перехода тока нагрузки через нуль.

ИГ должен обеспечивать следующие режимы работы:

периодический с заданным периодом и паузой повторения прерываний напряжения;

режим формирования одиночной последовательности прерываний напряжения, состоящий из трех прерываний, из которых длительность первого и второго равна десяти полупериодам частоты 50 Гц, а длительность третьего — 50 полупериодам частоты 50 Гц; пауза между прерываниями равна 30 полупериодам частоты 50 Гц.

3.4.2. Метод проведения испытаний

На ИТС воздействуют испытательным напряжением с характеристиками, указанными в табл. 2, с интервалом повторения не менее 10 с и определяют соответствие качества функционирования ИТС установленному критерию.

3.5. Испытания на устойчивость к воздействию нелинейных искажений напряжения сети переменного тока (УК 5)

3.5.1. Испытательный генератор

Упрощенная схема ИГ приведена на черт. 4. Характеристики ИГ при работе на активную нагрузку 50 Ом должны быть следующими:

амплитуда искажающего сигнала — 35 В;

динамический диапазон частоты искажающего сигнала — от 100 до 5000 Гц.

3.5.2. Метод проведения испытаний

На ИТС воздействуют испытательным напряжением с параметрами, указанными в табл. 2, и определяют качество функционирования ИТС установленному критерию.

3.6. Испытание на устойчивость к воздействию электростатических разрядов (УП 1)

3.6.1. Испытание проводят в соответствии с ГОСТ 29191 с учетом требований п. 2.1.

3.7. Испытание на устойчивость к воздействию электромагнитных полей (УП 2)

3.7.1. Испытание на устойчивость к воздействию электромагнитных полей проводят в соответствии с ГОСТ Р 50008 с учетом требований п. 2.1.

3.8. Измерение квазипикового значения напряжения радиопомех, создаваемых ТС (ИК 1)

3.8.1. Аппаратура, оборудование и метод измерения — по ГОСТ 29216. В диапазоне частот от 30 до 100 МГц дополнительно используют эквивалент сети типа 5 по ГОСТ 11001.

3.9. Измерение квазипикового значения напряженности поля радиопомех (ИП 1)

3.9.1. Аппаратура, оборудование и метод измерения — по ГОСТ 29216.

ГОСТ 13109-97 Электрическая энергия. Совместимость технических средств электромагнитная.

ОБЛАСТЬ ПРИМЕНЕНИЯ

Стандарт устанавливает показатели и нормы качества электрической энергии (КЭ) в электрических сетях систем электроснабжения общего назначения переменного трехфазного и однофазного тока частотой 50 Гц в точках, к которым присоединяются электрические сети, находящиеся в собственности различных потребителей электрической энергии, или приемники электрической энергии (точки общего присоединения).

Нормы КЭ, устанавливаемые настоящим стандартом, являются уровнями электромагнитной совместимости для кондуктивных электромагнитных помех в системах электроснабжения общего назначения. При соблюдении указанных норм обеспечивается электромагнитная совместимость электрических сетей систем электроснабжения общего назначения и электрических сетей потребителей электрической энергии (приемников электрической энергии).

Нормы, установленные настоящим стандартом, являются обязательными во всех режимах работы систем электроснабжения общего назначения, кроме режимов, обусловленных:

- исключительными погодными условиями и стихийными бедствиями (ураган, наводнение, землетрясение и т. п.);

- непредвиденными ситуациями, вызванными действиями стороны, не являющейся энергоснабжающей организацией и потребителем электроэнергии (пожар, взрыв, военные действия и т. п.);

- условиями, регламентированными государственными органами управления, а также связанными с ликвидацией последствий, вызванных исключительными погодными условиями и непредвиденными обстоятельствами.

Нормы, установленные настоящим стандартом, подлежат включению в технические условия на присоединение потребителей электрической энергии и в договоры на пользование электрической энергией между электроснабжающими организациями и потребителями электрической энергии.

При этом для обеспечения норм стандарта в точках общего присоединения допускается устанавливать в технических условиях на присоединение потребителей, являющихся виновниками ухудшения КЭ, и в договора на пользование электрической энергией с такими потребителями более жесткие нормы (с меньшими диапазонами изменения соответствующих показателей КЭ), чем установлены в настоящем стандарте.

По согласованию между энергоснабжающей организацией и потребителями допускается устанавливать в указанных технических условиях и договорах требования к показателям КЭ, для которых в настоящем стандарте нормы не установлены.

Нормы, установленные настоящим стандартом, применяют при проектировании и эксплуатации электрических сетей, а также при установлении уровней помехоустойчивости приемников электрической энергии и уровней кондуктивных электромагнитных помех, вносимых этими приемниками.

Нормы КЭ в электрических сетях, находящихся в собственности потребителей электрической энергии, регламентируемые отраслевыми, стандартами и иными нормативными документами, не должны быть ниже норм КЭ, установленных настоящим стандартом в точках общего присоединения. При отсутствии указанных отраслевых стандартов и иных нормативных документов нормы настоящего стандарта являются обязательными для электрических сетей потребителей электрической энергии.
2 НОРМАТИВНЫЕ ССЫЛКИ

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 721-77 Системы энергоснабжения, сети, источники, преобразователи и приемники электрической энергии. Номинальные напряжения свыше 1000 В

ГОСТ 19431-84 Энергетика и электрификация. Термины и определения

ГОСТ 21128-83 Системы энергоснабжения, сети, источники, преобразователи и приемники электрической энергии. Номинальные напряжения до 1000 В

ГОСТ 30372-95 Совместимость технических средств электромагнитная. Термины и определения
3 ОПРЕДЕЛЕНИЯ, ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ

3.1 В настоящем стандарте применяют термины, приведенные в ГОСТ 19431, ГОСТ 30372, а также следующие:

- система электроснабжения общего назначения — совокупность электроустановок и электрических устройств энергоснабжающей организации, предназначенных для обеспечения электрической энергией различных потребителей (приемников электрической энергии);

- электрическая сеть общего назначения — электрическая сеть энергоснабжающей организации, предназначенная для передачи электрической энергии различным потребителям (приемникам электрической энергии);

- центр питания — распределительное устройство генераторного напряжения электростанции или распределительное устройство вторичного напряжения понизительной подстанции энергосистемы, к которым присоединены распределительные сети данного района;

- точка общего присоединения — точка электрической сети общего назначения, электрически ближайшая к сетям рассматриваемого потребителя электрической энергии (входным устройствам рассматриваемого приемника электрической энергии), к которой присоединены или могут быть присоединены электрические сети других потребителей (входные устройства других приемников);

- потребитель электрической энергии — юридическое или физическое лицо, осуществляющее пользование электрической энергией (мощностью);

- кондуктивная электромагнитная помеха в системе энергоснабжения — электромагнитная помеха, распространяющаяся по элементам электрической сети;

- уровень электромагнитной совместимости в системе энергоснабжения — регламентированный уровень кондуктивной электромагнитной помехи, используемый в качестве эталонного для координации между допустимым уровнем помех, вносимым техническими средствами энергоснабжающей организации и потребителей электрической энергии, и уровнем помех, воспринимаемым техническими средствами без нарушения их нормального функционирования;

- огибающая среднеквадратичных значений напряжения — ступенчатая временная функция, образованная среднеквадратичными значениями напряжения, дискретно определенными на каждом полупериоде напряжения основной частоты;

- фликер — субъективное восприятие человеком колебаний светового потока искусственных источников освещения, вызванных колебаниями напряжения в электрической сети, питающей эти источники;

- доза фликера — мера восприимчивости человека к воздействию фликера за установленный промежуток времени;

- время восприятия фликера — минимальное время для субъективного восприятия человеком фликера, вызванного колебаниями напряжения определенной формы;

- частота повторения изменений напряжения — число одиночных изменений напряжения в единицу времени;

- длительность изменения напряжения — интервал времени от начала одиночного изменения напряжения до его конечного значения;

- провал напряжения — внезапное понижение напряжения в точке электрической сети ниже 0,9 Uном, которым следует восстановление напряжения до первоначального или близкого к нему уровня через промежуток времени от десяти миллисекунд до нескольких десятков секунд;

- длительность провала напряжения — интервал времени между начальным моментом провала напряжения и моментом восстановления напряжения до первоначального или близкого к нему уровня;

- частость появления провалов напряжения — число провалов напряжения определенной глубины и длительности за определенный промежуток времени по отношению в общему числу провалов за этот же промежуток времени;

- импульс напряжения — резкое изменение напряжения в точке электрической сети, за которым следует восстановление напряжения до первоначального или близкого к нему уровня за промежуток времени до нескольких миллисекунд;

- амплитуда импульса — максимальное мгновенное значение импульса напряжения;

- длительность импульса — интервал времени между начальным моментом импульса напряжения и моментом восстановления мгновенного значения напряжения до первоначального или близкого к нему уровня;

- временное перенапряжение — повышение напряжения в точке электрической сети выше 1,1 Uном продолжительностью более 10 мс, возникающее в системах электроснабжения при коммутациях или коротких замыканиях;

- коэффициент временного перенапряжения — величина, равная отношению максимального значения огибающей амплитудных значений напряжения за время существования временного перенапряжения к амплитуде номинального напряжения сети;

- длительность временного перенапряжения — интервал времени между начальным моментом возникновения временного перенапряжения и моментом его исчезновения.

3.2 В настоящем стандарте применяют следующие обозначения:

d Uy — установившееся отклонение напряжения;

d Ut — размах изменения напряжения;

Pt — доза фликера;

PSt — кратковременная доза фликера;

РLt — длительная доза фликера;

КU — коэффициент искажения синусоидальности кривой междуфазного (фазного) напряжения;

КU(n) — коэффициент n-ой гармонической составляющей напряжения;

K2U — коэффициент несимметрии напряжений по обратной последовательности;

К0U — коэффициент несимметрии напряжений по нулевой последовательности;

Df — отклонение частоты;

D tп — длительность провала напряжения;

Uимп — импульсное напряжение;

КперU — коэффициент временного перенапряжения;

U(1)t — действующее значение междуфазного (фазного) напряжения основной частоты в i-ом наблюдении;

UAB(1)i, UBC(1)i, UCA(1)i — действующие значения междуфазных напряжений основной частоты в i-ом наблюдении;

U1 (1)i — действующее значение междуфазного (фазного) напряжения прямой последовательности основной частоты в i-ом наблюдении;

Uy — усредненное значение напряжения;

N- число наблюдений;

Uном — номинальное междуфазное (фазное) напряжение;

Uном. ф — номинальное фазное напряжение;

Uном. мф — номинальной междуфазное напряжение;

Uскв — среднеквадратичное значение напряжения, определяемое на полупериоде напряжения основной частоты;

Ui, Ui+1 — значения следующих один за другим экстремумов или экстремума и горизонтального участка огибающей среднеквадратичных значений напряжения основной частоты;

Uai, Uai+1 — значения следующих один за другим экстремумов или экстремума и горизонтального участка огибающей амплитудных значений напряжения на каждом полупериоде основной частоты;

Т — интервал времени измерения;

m — число изменений напряжения за время T;

FdUt — частота повторения изменений напряжения;

ti, ti+1 — начальные моменты следующих один за другим изменений напряжения;

Dti, i+1 — интервал между смежными изменениями напряжения;

ps — сглаженный уровень фликера;

P1s, P3s, P10s, P50s — сглаженные уровни фликера при интегральной вероятности,, равной 1,0; 3,0; 10,0; 50,0 % соответственно;

Tsh — интервал времени измерения кратковременной дозы фликера;

TL — интервал времени измерения длительной дозы фликера;

n — номер гармонической составляющей напряжения;

РStk — кратковременная доза фликера на k-ом интервале времени Tsh в течение длительного периода наблюдения TL;

U(n)i — действующее значение n-ой гармонической составляющей междуфазного (фазного) напряжения в i-ом наблюдении;

KUi- коэффициент искажения синусоидальности кривой междуфазного (фазного) напряжения в i-ом наблюдении;

KU(n)i — коэффициент n-ой гармонической составляющей напряжения в i-ом наблюдении;

Tns — интервал времени усреднения наблюдений при измерении коэффициента искажения синусоидальности кривой напряжения;

U2(1)i — действующее значение напряжения обратной последовательности основной частоты трехфазной системы напряжений в i-ом наблюдении;

K2Ui — коэффициент несимметрии напряжений по обратной последовательности в i-ом наблюдении;

Uнб(1)i, Uнм(1)i — наибольшее и наименьшее действующие значения из трех междуфазных напряжений основной частоты в i-ом наблюдении;

U0(1)i — действующее значение напряжения нулевой последовательности основной частоты трехфазной системы напряжений в i-ом наблюдении;

K0Ui — коэффициент несимметрии напряжений по нулевой последовательности в i-ом наблюдении;

Uнб ф(1)i, Uнм ф(1)i — наибольшее и наименьшее из трех действующих значений фазных напряжений основной частоты в i-ом наблюдении;

fном — номинальное значение частоты;

tн — начальный момент времени резкого спада огибающей среднеквадратичных значений напряжения;

tк — конечный момент времени восстановления среднеквадратичного значения напряжения;

d Uп — глубина провала напряжения;

М — общее число провалов напряжения за период времени наблюдения Т;

m (d Uп, D tп)- число провалов напряжения глубиной d Uп и длительностью D tп за рассматриваемый период времени наблюдения Т;

Fп — частость появления провалов напряжения;

tн0,5, tк0,5 — моменты времени, соответствующие пересечению кривой импульса напряжения горизонтальной линией, проведенной на половине амплитуды импульса;

Uа — амплитудное значение напряжения;

Uamax — максимальное амплитудное значение напряжения.

3.3 В настоящем стандарте применяют следующие сокращения:

КЭ — качество электрической энергии;

ЦП — центр питания;

РП — распределительная подстанция;

ТП — трансформаторная подстанция;

АПВ — автоматическое повторное включение;

АВР — автоматическое включение резерва;

ВЛ — воздушная линия;

КЛ — кабельная линия;

Тр — трансформатор.
4 ПОКАЗАТЕЛИ КЭ

4.1 Показателями КЭ являются:

- установившееся отклонение напряжения d Uy;

- размах изменения напряжения d Ut;

- доза фликера Pt;

- коэффициент искажения синусоидальности кривой напряжения KU;

- коэффициент n-ой гармонической составляющей напряжения KU(n);

- коэффициент несимметрии напряжений по обратной последовательности K2U;

- коэффициент несимметрии напряжений по нулевой последовательности K0U;

- отклонение частоты Df;

- длительность провала напряжения D tп;

- импульсное напряжение Uимп;

- коэффициент временного перенапряжения Kпер U.

Свойства электрической энергии, графические пояснения этих свойств, показатели КЭ, а также наиболее вероятные виновники ухудшения КЭ приведены в приложении А.

4.2 При определении значений некоторых показателей КЭ используют следующие вспомогательные параметры электрической энергии:

- частоту повторения изменений напряжения FdUt;

- интервал между изменениями напряжения Dti, i+1;

- глубину провала напряжения d Uп;

- частость появления провалов напряжения Fп;

- длительность импульса по уровню 0,5 его амплитуды D tимп0,5;

- длительность временного перенапряжения D tпер U .

4.3 Способы расчета и методики определения показателей КЭ и вспомогательных параметров приведены в приложении Б.
5 НОРМЫ КЭ

5.1 Установлены два вида норм КЭ: нормально допустимые и предельно допустимые.

Оценка соответствия показателей КЭ указанным нормам проводится в течение расчетного периода, равного 24 ч, в соответствии с требованиями раздела 6.

5.2 Отклонение напряжения

Отклонение напряжения характеризуется показателем установившегося отклонения напряжения, для которого установлены следующие нормы:

- нормально допустимые и предельно допустимые значения установившегося отклонения напряжения d Uy на выводах приемников электрической энергии равны соответственно ±5 и ±10 % от номинального напряжения электрической сети по ГОСТ 721 и ГОСТ 21128 (номинальное напряжение);

- нормально допустимые и предельно допустимые значения установившегося отклонения напряжения в точках общего присоединения потребителей электрической энергии к электрическим сетям напряжением 0,38 кВ и более должны быть установлены в договорах на пользование электрической энергией между энергоснабжающей организацией и потребителем с учетом необходимости выполнения норм настоящего стандарта на выводах приемников электрической энергии. Определение указанных нормально допустимых и предельно допустимых значений проводят в соответствии с нормативными документами, утвержденными в установленном порядке.

5.3 Колебания напряжения

Колебания напряжения характеризуются следующими показателями:

- размахом изменения напряжения;

- дозой фликера.

Нормы приведенных показателей установлены в 5.3.1-5.3.5.

5.3.1 Предельно допустимые значения размаха изменения напряжения d Ut в точках общего присоединения к электрическим сетям при колебаниях напряжения, огибающая которых имеет форму меандра , в зависимости от частоты повторения изменений напряжения FdUt или интервала между изменениями напряжения D ti, i+1 равны значениям, определяемым по кривой 1, а для потребителей электрической энергии, располагающих лампами накаливания, в помещениях, где требуется значительное зрительное напряжение, — равны значениям, определяемым по кривой 2 рисунка 1. Перечень помещений с разрядами работ, требующих значительного зрительного напряжения, устанавливают в нормативных документах, утверждаемых в установленном порядке.

ГОСТ 464-79 Заземления для стационарных установок проводной связи, радиорелейных станций радиотранслячнционных узлов проводного вещания

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. К рабоче-защитному или защитному заземляющему устройству при помощи заземляющих проводов кратчайшим путем должны быть подключены:

один из полюсов электропитающей установки;

нейтраль трансформаторов, вывод источника однофазного тока трансформаторной подстанции или собственной электростанции, питающей оборудование предприятий связи, радиорелейную станцию или станцию ПВ;

металлические части силового, стативного и коммутаторного оборудования;

металлическая опорная эквипотенциальная поверхность электронных телефонных станций;

металлические трубопроводы водопровода и центрального отопления и других металлических конструкций внутри здания;

экраны аппаратуры и кабелей;

металлические оболочки кабелей, элементы схем защиты, молниеотводы;

антенны СКПТ, подлежащие молниезащите в соответствии с нормативно-технической документацией (далее — НТД).

Число заземляющих проводов и порядок подключения к ним аппаратуры и оборудования устанавливают в НТД на аппаратуру конкретного вида.

1.2. На предприятиях связи следует оборудовать защитное заземляющее устройство, если отсутствуют соединительные линии и цепи дистанционного питания аппаратуры, использующие землю в качестве провода электрической цепи.

Требования к защитным заземлениям и занулениям — по ГОСТ 12.1.030.

1.3. На предприятиях связи следует оборудовать одно рабоче-защитное заземляющее устройство, если заземлен «минус» источника тока дистанционного питания, (при этом цепи дистанционного питания допускается включать по схеме «провод-земля») или заземлен «плюс» источника тока, но отсутствуют цепи дистанционного питания по схеме «провод-земля». При этом соединительные линии могут использовать «землю» в качестве провода электрической цепи. Контур рабоче-защитного заземляющего устройства при наличии цепей дистанционного питания должен иметь два самостоятельных ввода в здание (до щитка заземления).

На предприятиях следует оборудовать обособленные рабочее и защитное заземляющие устройства, если имеются цепи дистанционного питания по схеме «провод-земля» с заземлением «плюса» источника тока.

1.4. Нейтраль трансформаторов, вывод источника однофазного тока трансформаторной подстанции или собственной электростанции, питающей оборудование предприятий связи, радиорелейную станцию или станцию ПВ, должны быть присоединены к защитному или рабоче-защитному заземляющему устройству. При этом заземляющее устройство для указанного выше предприятия и для трансформаторной подстанции должно быть общим, если расстояние между предприятием и трансформаторной подстанцией менее 100 м.

Сопротивление общего заземляющего устройства должно соответствовать нормам сопротивления заземляющих устройств для каждой подключаемой установки.

Сопротивление заземляющего устройства, к которому присоединены нейтрали генераторов или трансформаторов или вывод источника однофазного тока, при удельном сопротивлении грунта до 100 Ом?м не должно быть более, Ом:

2 — установок напряжением 660/380 В;

4 — установок напряжением 380/220 В;

8 — установок напряжением 220/127 В.

При удельном сопротивлении грунта r более 100 Ом?м допускается повысить значение сопротивления заземляющего устройства в r/100 раз, но не более чем в десять раз, а также не более значений, указанных в табл. 1-3, 5 и в пп. 2.1.5, 2.4.5, 2.7.2.

1.4а. Сопротивление защитного или рабоче-защитного заземляющего устройства должно быть обеспечено с учетом использования естественных заземлителей (проложенные под землей металлические трубы, металлические конструкции, арматура зданий и их бетонных фундаментов и другое, за исключением трубопроводов горючих и взрывоопасных смесей, канализации, центрального отопления и бытового водопровода, расположенных вне здания, в котором размещено оборудование предприятия связи или станция ПВ).

1.5. Конструкция искусственных заземлителей или различных контуров заземляющего устройства, марка и сечение соединяющих проводников от заземляющего устройства к щитку заземления, перечень аппаратуры, оборудования и элементов защиты, присоединяемых к заземляющему устройству, способы присоединения проводок и их число, методика измерения сопротивления заземляющих устройств и удельного сопротивления грунта устанавливают в НТД на аппаратуру конкретного вида.

1.6. Расстояние между отдельными неизолированными частями разных заземляющих устройств (между рабочим, защитным, измерительным и др.) на участке до ввода в здание не должно быть менее 20 м.

1.7. Сопротивление измерительного заземляющего устройства не должно быть более 100 Ом в грунтах с удельным сопротивлением до 100 Ом?м и 200 Ом — в грунтах с удельным сопротивлением более 100 Ом?м.

1.8. Сопротивление линейно-защитных заземляющих устройств для линий связи и проводного вешания на участках опасного влияния линий электропередачи, электрифицированных железных дорог, а также при влиянии радиостанций и импульсных воздействиях (исключая грозовые разряды), определенное расчетом в соответствии с требованиями НТД, не должно превышать значений, устанавливаемых настоящим стандартом.

1.9. При эксплуатации заземляющих устройств следует проверять их сопротивления с периодичностью:

два раза в год — летом (в период наибольшего просыхания грунта) и зимой (в период наибольшего промерзания грунта) — на междугородных, городских и сельских телефонных станциях, телеграфных станциях, телеграфных трансляционных, оконечных и абонентских пунктах;

раз в год — летом (в период наибольшего просыхания грунта) — на радиорелейных станциях, на станциях и подстанциях радиотрансляционных узлов;

раз в год — перед началом грозового периода (апрель — май) — в необслуживаемых усилительных пунктах (НУП) и регенерационных пунктах (РП) междугородной, городской и сельской связи; для контейнеров аппаратуры систем передачи (ИКМ-30 и др.);

раз в год — перед началом грозового периода — на кабельных и воздушных линиях связи и радиотрансляционных сетей, у кабельных опор и опор, на которых установлены средства защиты, на абонентских пунктах телефонных и радиотрансляционных сетей, у понижающих трансформаторов таксофонных кабин;

не реже раза в год (перед началом грозового периода) — для антенн систем коллективного приема телевидения.
2. НОРМЫ СОПРОТИВЛЕНИЯ

2.1. Нормы сопротивления заземляющих устройств для междугородных телефонных станций и оконечных пунктов избирательной железнодорожной связи

2.1.1. Междугородные телефонные станции (МТС), оконечные пункты избирательной железнодорожной связи, линейно-аппаратные цехи (ЛАЦ) и промежуточные усилительные пункты с электропитающими установками должны быть оборудованы защитным или рабоче-защитным заземляющим устройством и двумя измерительными заземляющими устройствами. При оборудовании рабочего и защитного заземляющих устройств согласно п. 1.3 устраивают одно измерительное заземляющее устройство, которое должно быть соединено параллельно защитному заземляющему устройству.

В рабочем состоянии измерительные заземляющие устройства должны быть соединены на щитке заземлений параллельно защитным или рабоче-защитным заземляющим устройствам.

2.1.2. Сопротивление защитных заземляющих устройств МТС, линейно-аппаратных цехов и промежуточных усилительных пунктов, а также оконечных пунктов избирательной железнодорожной связи с электропитающими установками, не использующими землю в качестве проводника тока в схемах соединительных линий или дистанционного питания необслуживаемых усилительных и регенерационных пунктов по системе «провод-земля», должно быть не более значений, указанных в п. 1.4.

2.1.3. Сопротивление защитных заземляющих устройств промежуточных пунктов, не имеющих электропитающих установок, должно быть не более 10Ом для грунтов с удельным сопротивлением до 100 Ом?м и не более 30 Ом — для грунтов с удельным сопротивлением более 100 Ом?м.

2.1.4. Сопротивление рабочих или рабоче-защитных заземляющих устройств МТС, использующих землю в качестве одного из проводов соединительных линий любого типа (заказных, служебных от МТС и АТС, транзитных служебных линий и др.), или в цепях дистанционного питания (ДП) должно быть не более значений, указанных в табл. 1, а рабоче-защитных заземляющих устройств должно также соответствовать требованиям п. 1.4.

2.1.5. Сопротивление рабочих или рабоче-защитных заземляющих устройств линейно-аппаратных цехов, опорных пунктов; обслуживаемых усилительных пунктов, питающих дистанционно не обслуживаемые или регенерационные пункты по схеме «провод-земля», должно быть определено исходя из падения напряжения на заземляющем устройстве от тока дистанционного питания не более 12 В. Однако сопротивление рабочих или рабоче-защитных заземляющих устройств должно быть не более значений, указанных в п. 1.4.

2.1.6. Обслуживаемые усилительные пункты подводных кабельных линий, питающих дистанционно подводные усилители по схеме «провод-земля», должны быть оборудованы двумя обособленными рабочими заземляющими устройствами (основным и резервным), которые в рабочем состоянии должны быть соединены на щитке заземлений. Сопротивление основного рабочего заземляющего устройства должно быть не более 5 Ом и резервного — не более 10 Ом.

2.2. Нормы сопротивления заземляющих устройств для необслуживаемых усилительных пунктов междугородной связи и промежуточных пунктов избирательной железнодорожной связи

2.2.1. Необслуживаемые усилительные пункты (НУП), питаемые дистанционно по схеме «провод-земля», в которых оканчивается цепь дистанционного питания, должны быть оборудованы тремя обособленными заземляющими устройствами — рабочим, защитным и линейно-защитным.

В качестве защитного заземляющего устройства допускается использовать магниевые протекторы, применяемые для защиты металлических цистерн НУП от почвенной коррозии.

В случаях, когда не требуется защита металлических цистерн НУП от почвенной коррозии, а также при использовании неметаллических корпусов, НУП должны быть оборудованы рабочим и объединенным защитным заземляющими устройствами.

2.2.2. Необслуживаемые усилительные пункты (НУП) и регенерационные пункты (РП), питаемые дистанционно по схеме «провод-провод», а также НУП, питаемые по схеме «провод-земля», в которых не оканчивается цепь дистанционного питания, должны быть оборудованы двумя обособленными заземляющими устройствами — защитным и линейно-защитным.

В качестве заземлителей для защитного заземляющего устройства допускается использовать магниевые протекторы, применяемые для защиты металлических цистерн НУП или РП от почвенной коррозии.

В случаях, когда не требуется защита металлических цистерн НУП или РП от коррозии, а также при использовании неметаллических корпусов НУП или РП, должно быть оборудовано объединенное защитное заземляющее устройство.

2.2.3. Сопротивление рабочего заземляющего устройства для НУП, питаемых по схеме «провод-земля», должно быть не более 10 Ом для грунтов с удельным сопротивлением до 100 Ом?м и не более 30 Ом — для грунтов с удельным сопротивлением более 100 Ом?м. При этом падение напряжения от токов дистанционного питания на сопротивлении заземляющего устройства должно быть не более 12 В для грунтов с удельным сопротивлением до 100 Ом?м и не более 36 В — для грунтов с удельным сопротивлением более 100 Ом?м.

2.2.4. Сопротивление защитных заземляющих устройств для НУП или РП, питаемых по схеме «провод-земля» и «провод-провод», должно быть не более 10 Ом для грунтов с удельным сопротивлением до 100 Ом?м и не более 30 Ом — для грунтов с удельным сопротивлением более 100 Ом?м.

2.2.5. Сопротивление линейно-защитных заземляющих устройств для оболочек кабелей, оборудуемых на НУП или РП, при защите кабелей от ударов молнии должно быть не более, Ом:

10 — для грунтов с удельным сопротивлением до 100 Ом?м включ.;

20 — для грунтов с удельным сопротивлением св. 100 до 500Ом?м включ.;

30 — для грунтов с удельным сопротивлением св. 500 до 1000 Ом?м включ.;

50 — для грунтов с удельным сопротивлением св. 1000 Ом?м.

ГОСТ Р 51287-99 Техника телефонная абонентская. Требования безопасности и метод испытаний

1 Область применения

Настоящий стандарт устанавливает нормы, правила и методы испытаний, являющиеся общими для всей абонентской телефонной техники (АТТ), соблюдение которых обеспечивает безопасность пользователей.

Требования настоящего стандарта являются обязательными при сертификации АТТ. Стандарт относится только к безопасности АТТ и не распространяется на другие ее свойства.
2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 8.051-81 Государственная система обеспечения единства измерений. Погрешности, допускаемые при измерении линейных размеров до 500 мм

ГОСТ 8.417-81 Государственная система обеспечения единства измерений. Единицы физических величин

ГОСТ 12.1.004-91 Система стандартов безопасности труда. Пожарная безопасность. Общие требования

ГОСТ 12.1.044-89 Система стандартов безопасности труда. Пожаровзрывоопасность веществ и материалов. Номенклатура показателей и методы их определения

ГОСТ 166-89 Штангенциркули. Технические условия

ГОСТ 427-75 Линейки измерительные металлические. Технические условия

ГОСТ 6507-90 Микрометры. Технические условия

ГОСТ 7153-85 Аппараты телефонные общего применения. Общие технические условия

ГОСТ 7328-82 Меры массы общего назначения и образцовые. Технические условия

ГОСТ 7396.1-89 Соединители электрические штепсельные бытового и аналогичного назначения. Основные размеры

ГОСТ 8711-93 Приборы аналоговые показывающие электроизмерительные прямого действия и вспомогательные части к ним. Часть 2. Особые требования к амперметрам и вольтметрам

ГОСТ 8810-81 Розетки и вилки телефонные. Технические условия

ГОСТ 14254-96 Степени защиты, обеспечиваемые оболочками (Код IP)

ГОСТ 15088-83 Пластмассы. Метод определения температуры размягчения термопластов по Вика

ГОСТ 19472-88 Система автоматизированной телефонной связи общегосударственная. Термины и определения

ГОСТ 25874-83 Аппаратура радиоэлектронная, электронная и электротехническая. Условные функциональные обозначения

ГОСТ 28002-88 Аппаратура радиоэлектронная бытовая. Общие требования по защите от электростатических разрядов и методы испытаний
3 Определения

Термины, применяемые в стандарте, — по ГОСТ 19472, ГОСТ 7153.

В настоящем стандарте применены следующие термины:

3.1 номинальное напряжение питания: Напряжение питания или диапазон напряжений питания, на которое рассчитана АТТ при изготовлении.

3.2 источник питания: Устройство, получающее энергию от сети питания и питающее одно или несколько изделий АТТ.

3.3 защитный провод (проводник) заземления: Провод, предусмотренный конструкцией АТТ для соединения с землей частей АТТ, которые должны быть заземлены в целях безопасности.

3.4 соединитель: Узел АТТ, с помощью которого устанавливается соединение с внешними проводниками или другой АТТ и (или) устройствами. Соединитель может иметь несколько контактов.

3.5 опасное напряжение: Напряжение, превышающее 42 В переменного или 60 В постоянного напряжения, которое имеется в цепях, не удовлетворяющих требованиям к цепи ограниченного тока.

3.6 доступная часть: Часть АТТ, которой можно коснуться стандартным испытательным пальцем.

3.7 зазор: Кратчайшее расстояние между токопроводящими деталями в воздухе.

3.8 путь утечки: Кратчайшее расстояние между токопроводящими деталями, измеренное по внешней поверхности изоляционного материала.

3.9 испытание на безопасность: Серия испытаний образцов АТТ одного типа с целью выявления соответствия указанного типа требованиям настоящего стандарта.

3.10 установившийся режим: Условия работы АТТ при функционировании или воздействии окружающей среды после прекращения переходных процессов, связанных с изменением режима работы или внешних воздействий.

3.11 питающий комплект: Совокупность приборов, обеспечивающих подачу энергии для питания АТТ в заданном режиме.

3.12 цепь ограниченного тока: Цепь, изготовленная и защищенная таким образом, чтобы ток, протекающий по ней, в нормальных условиях и в случае неисправности был безопасным.
4 Обозначения и сокращения

АТТ — абонентская телефонная техника

ТУ — технические условия

ЭД — эксплуатационная документация

МТ — микротелефонная трубка

ТА — телефонный аппарат

ЦБ — центральная батарея

АТС — автоматическая телефонная станция

РТС — ручная телефонная станция

УИ — ухо искусственное

КД — конструкторская документация.
5 Классификация АТТ

5.1 По типу защиты от поражения электрическим током АТТ (далее — аппараты) подразделяют на два класса: I и II.

5.1.1 Аппараты класса I — изделия, которые подключают к телефонным станциям с номинальными напряжениями станционных источников питания 60, 48, 24 В постоянного тока, и могут иметь дополнительные источники питания (батареи и т. п.) с номинальным напряжением не более 60 В постоянного тока и не более 42 В переменного тока.

Аппараты класса I подразделяют на две группы: I.1 и I.2.

Аппараты группы I.1 имеют контакт для заземления или защитный провод.

В аппаратах группы I.2 контакт для заземления или защитный провод отсутствует.

5.1.2 Аппараты класса II-изделия, которые (наряду с питанием от телефонной станции) подключают к источникам питания или имеют рабочее напряжение выше 60 В постоянного тока и выше 42 В переменного тока (питающая сеть, вызывной сигнал, индуктор).

Аппараты класса II подразделяют на две группы: II.1 и II.2.

Аппараты группы II.1 имеют контакт для заземления или защитный провод.

В аппаратах группы II.2 контакт для заземления или защитный провод отсутствует.

5.2 Пункты требований безопасности аппаратов различных классов, подлежащие проверке, приведены в приложении А.
6 Технические требования

6.1 Требования к маркировке

6.1.1 Аппарат должен иметь четкую маркировку (7.3), содержащую:

- наименование и (или) товарный знак предприятия-изготовителя;

- торговое наименование модели и номер;

- дату выпуска (месяц, год);

- отметку технического контроля предприятия-изготовителя;

- дополнительные сведения, указанные в ТУ.

6.1.2 Маркировка по безопасности (7.2, 7.3) должна быть:

- однозначно понимаемой и легко различимой на аппарате, готовом к эксплуатации;

- несмываемой и разборчивой.

6.1.3 Маркировка должна быть нанесена (7.3) в легкодоступном месте, преимущественно на внешней поверхности аппарата. Место маркировки должно быть указано в руководстве по эксплуатации.

6.1.4 Буквенные обозначения физических величин и единиц их измерения (7.3) должны соответствовать ГОСТ 8.417.

Графические обозначения должны соответствовать ГОСТ 25874.

6.1.5 (требования, не обязательные для аппаратов класса I) Предупредительные символы и надписи (7.3) должны применяться для указания на:

- включенное состояние аппарата;

- наличие напряжения;

- режим работы изделия;

- запрет доступа внутрь изделия без принятия соответствующих мер;

- аварийный режим;

- действие элементов защиты и т. п.

6.1.6 На аппарате, для обеспечения безопасности (7.3) при эксплуатации которого необходимо соблюдать меры, указанные в инструкции по эксплуатации, должен быть нанесен символ rgost.ru — госты. Символ наносят на переднюю панель или около частей, представляющих опасность.

6.1.7 Вблизи ввода питания должно быть обозначено (7.4):

- вид питания — символом по ГОСТ 25874;

- номинальное напряжение питания или диапазон номинальных напряжений;

- значение напряжения, на которое установлен аппарат;

- номинальная частота сети питания (или диапазон частот);

- напряжение (если оно отличается от напряжения сети питания) и мощность или сила тока, снимаемые с выхода, предназначенного для подачи на другое изделие.

6.1.8 На органах управления и присоединения или рядом с ними должны быть нанесены надписи или символы (7.3), указывающие назначение этих органов.

6.1.9 Соединители должны иметь следующие обозначения (7.3):

- клемма защитного заземления (при наличии) — символ по ГОСТ 25874. Обозначение не наносят, если зажим защитного заземления является частью сетевого приборного разъема (вилки/розетки);

- клемма функционального заземления (при наличии) — символ по ГОСТ 25874;

- соединители, находящиеся под опасным напряжением, превышающим 1 кВ, — символ красного цвета rgost.ru — госты.

6.1.10 На держателе плавких вставок или вблизи него должны быть обозначены номинальная сила тока и типы (замедленного действия — Т, быстродействующие — Б) заменяемых плавких предохранителей (7.4). Если обозначение нельзя указать рядом с держателем, то следует наносить символ в соответствии с требованиями 6.1.6, а номинальные значения и типы указывать в эксплуатационной документации (ЭД) на аппарат.

6.1.12 Крышки, которые при нормальной эксплуатации снимаются и открывают доступ к частям под опасным напряжением или напряжением выше 1 кВ, должны быть обозначены символом rgost.ru — гостыили rgost.ru — гостысоответственно (7.3).

6.1.13 Для сменных деталей, например ограничителей температуры, батарей и т. д., должна быть приведена необходимая информация, обеспечивающая правильную их замену (7.1.3).

6.1.14 Допускается указывать дополнительную информацию.

6.1.15 Эксплуатационная документация

Документация, поставляемая с аппаратом, должна содержать информацию и предупреждения, которыми потребитель должен руководствоваться для обеспечения безопасной работы аппарата и сохранения его безопасного состояния (7.5).

Рекомендуемый перечень информации в зависимости от вида и сложности аппаратов приведен в приложении Б.

Если по причинам безопасности какой-либо компонент может быть заменен только компонентом, указанным в данной ЭД, то он должен быть обозначен символом rgost.ru — госты. Указанный символ не должен размещаться на деталях и печатных платах.

Если аппарат, питаемый от сети, может работать и от батарей, то в ЭД должно быть указание о недопустимости воздействия на аппарат капель и брызг при условии, что в аппарате отсутствует специальная защита батарейного отсека.

6.2 Требования к конструкции

6.2.1 Электрическая схема аппарата должна исключить возможность его самопроизвольного включения и отключения (7.6.1).

6.2.2 Конструкция аппарата должна исключать возможность неправильного присоединения его сочленяемых частей, в том числе токоведущих, при установке (монтаже) у потребителя (7.6.2).

6.2.3 Доступные для касания элементы конструкции и детали аппарата не должны находиться под опасным напряжением (7.6.3).

Части аппарата, которые становятся доступными для касания после снятия защищающих крышек или других съемных частей без применения инструмента, не должны находиться под опасным напряжением.

Части аппарата под опасным напряжением должны быть закрыты либо защищены изоляцией.

Части аппарата, находящиеся под опасным напряжением, не должны становиться доступными для касания при замене плавких вставок и встроенных источников питания (батарей), при переключении аппарата на различные номинальные напряжения или источники питания, если такие операции проводят без применения инструмента.

6.2.4 Вентиляционные отверстия над частями аппарата, находящимися под напряжением, должны быть расположены таким образом, чтобы посторонний предмет, если он проник в это отверстие, не мог соприкасаться с частями аппарата, находящимися под опасным напряжением (7.6.4).

6.2.5 Органы регулирования должны быть сконструированы и расположены таким образом, чтобы в процессе регулировки инструмент не мог оказаться под опасным напряжением (7.6.5).

6.2.6 Оси ручек управления и настройки не должны находиться под опасным напряжением (7.6.6).

6.2.7 Кнопки, ручки и т. п., при помощи которых управляют работой деталей, находящихся под опасным напряжением, должны быть изготовлены из изоляционного материала и (или) связаны с этими деталями изолирующими стержнями (7.6.7).

6.2.8 Выключатель сетевого питания должен отключать все части аппарата от всех полюсов сети. При этом не должен отключаться провод защитного заземления (7.6.7).

Элементы подавления помех и предохранители допускается оставлять неотключенными.

Выключатели сетевого питания или основные выключатели должны соответствовать мощности, потребляемой от сети электропитания.

Выключатель сетевого питания не обязателен:

- если аппарат предназначен для непрерывной работы;

- если в системе питания предусмотрены средства отключения;

- для вспомогательных устройств, таких, как устройства подзарядки батарей и т. п., если требуется их непрерывная работа.

6.2.9 Аппараты класса II должны иметь на входе сети питания плавкие предохранители или прерыватели для ограничения входного тока. Срабатывание любого предохранителя не должно нарушать защитного заземления (7.6.7).

6.2.10 Аппараты с встроенными химическими источниками питания (батареями) должны быть сконструированы таким образом, чтобы было исключено растекание электролита и не было опасности накопления воспламеняющихся газов (7.6.7).

6.2.11 Соединения под винт, обеспечивающие контактное давление и винтовой крепеж, которые в течение срока службы неоднократно ослабляются и закрепляются (винты зажимов, винты для закрепления ручек, кнопок, крышек и т. д.), должны быть достаточно прочными и завинчиваться в металлическую гайку или прокладку (7.6.7).

6.2.12 Зажимы, на которые изнутри аппарата подается опасное напряжение, не должны быть доступны для касания (7.6.3, 7.6.7).

6.2.13 Доступные для касания зажимы и гнезда, находящиеся под напряжением, должны быть защищены при помощи крышек соответствующего расположения или монтажа и иметь обозначение по 6.1.9 (7.6.2, 7.6.7).

Зажимы, на которые подается напряжение от внутренних конденсаторов, не должны находиться под опасным напряжением через 10 с после отключения питания.

Доступные для касания зажимы для подсоединения гибких проводов, находящихся под опасным напряжением, не должны допускать случайного контакта между частями под напряжением и другими токопроводящими частями или между частями с разным напряжением. Доступные зажимы должны быть укреплены таким образом, чтобы исключить возможность ослабления при их завинчивании, отвинчивании или присоединении к ним проводов. Конструкция и расположение этих зажимов должны быть такими, чтобы их присоединение к доступным для касания токопроводящим частям либо отсутствие такового было очевидным.

6.2.14 Зажимы заземления, зажимы для микротелефонной трубки (МТ) и головных телефонов не должны находиться под опасным напряжением (7.6.3, 7.6.7).

6.2.15 Вилки шнуров питания аппарата от разных источников не должны подходить к розеткам сети, не предназначенным для их включения (7.6.7).

6.2.16 Сетевые электрические соединители для подключения аппарата к однофазной сети электропитания, а также сетевые розетки, предназначенные для подачи электропитания (7.6.7); должны соответствовать требованиям ГОСТ 7396.1.

6.2.17 Электрические соединители для подключения аппарата к АТС, а также вилки (розетки), предназначенные для подачи соответствующего электросигнала (7.6.7), должны соответствовать ГОСТ 8810.

6.2.18 Изоляция всех проводников шнуров и жгутов внутри аппарата, содержащих проводники, находящиеся под опасным напряжением, и проводников, соединенных с доступными для касания токопроводящими частями, должна быть рассчитана на наибольшее напряжение (7.6.9).

6.2.19 Проводники внешних шнуров в точках подсоединения не должны подвергаться натяжению и перекручиванию. Если повреждение изоляции шнура или проводника приводит к попаданию доступных для касания частей аппарата под опасное напряжение, то элементы конструкции, предотвращающие натяжение и перекручивание шнура, должны быть изготовлены из изолирующего материала. Конструкцией крепления шнура должна быть исключена возможность его введения внутрь аппарата (7.6.9).

6.2.20 При креплении шнуров внутри аппарата проводники должны легко вставляться и подсоединяться без образования перегибов и повреждения шнура при его креплении, а также при дальнейшей эксплуатации (7.6.9).

6.2.21 Электродвигатели, имеющиеся в аппарате, должны соответствовать следующим требованиям:

- конструкция электродвигателей и элементов их крепления должна исключать возможность повреждения изоляции, нарушения контактов и соединений при нагреве и вибрации, вызываемых работой двигателя;

- электродвигатели должны иметь надежный запуск при напряжениях питания от 0,9 до 1,1 Uном;

- конструкция электродвигателей и способ их установки должны исключать возможность попадания на проводку, обмотки, коллекторы, контактные кольца и т. д. смазочного материала и других веществ, разрушающих изоляцию;

- движущиеся детали должны быть закрыты или расположены таким образом, чтобы исключить возможность травмирования;

- защитные ограждения должны быть достаточной прочности и не должны сниматься без помощи инструмента;

- конструкция электродвигателей должна предотвращать перегрев выше допустимого, даже если электродвигатель застопорится в процессе эксплуатации или не запустится. Например, может быть применена защита при помощи реле максимального тока или термореле.

ГОСТ 23474-79 Приборы кабельные. Общие технические требования, правила приемки и методы испытаний

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на кабельные приборы переносные (далее — приборы), предназначенные для измерения электрических характеристик и определения расстояния до места повреждения элементов конструкции кабельных и воздушных линий связи (жил, проводников, проводов и т. п.).

Стандарт не распространяется на:

высоковольтные кабельные мосты;

мосты полных проводимостей (сопротивлений);

приборы для определения расстояния до места повреждения линий связи, основанные на методе зондирующих импульсов.

(Измененная редакция, Изм. № 1).
1. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

1.1. Приборы должны изготовляться в соответствии с требованиями настоящего стандарта и нормативно-технической документации на приборы конкретных типов.

1.2. Виды измеряемых электрических величин

1.2.1. Приборы предназначены для измерения на линиях связи следующих параметров:

электрического сопротивления шлейфа жил Rшл;

разности электрических сопротивлений жил — омической асимметрии Ra;

электрического сопротивления изоляции жил Rиз;

электрической емкости жил С;

переходного сопротивления Rп;

электрического сопротивления жилы до места понижения электрического сопротивления изоляции Rх и (или) отношения Rx к электрическому сопротивлению исправной жилы rgost.ru — госты;

электрической емкости жилы до места обрыва Сх и (или) отношения Сх к электрической емкости исправной жилы rgost.ru — госты.

Примечание. Методы измерения электрических характеристик и определение расстояния до места повреждения жил устанавливают в нормативно-технической документации на приборы конкретного типа.

Измененная редакция, Изм. № 2).

1.2.2. (Исключен, Изм. № 2).

1.2.3. Приборы по согласованию с потребителем должны содержать специальные схемы для измерения электрических величин в условиях помех. Параметры помех, а также связанные с ними изменения метрологических характеристик устанавливают в технических условиях на приборы конкретного типа.

1.2.4. Приборы должны обеспечивать измерение электрического сопротивления жилы до места понижения электрического сопротивления изоляции и (или) отношения электрического сопротивления жилы до места понижения электрического сопротивления изоляции к электрическому сопротивлению исправной жилы при значениях 1<Ки

где rgost.ru — госты — отношение эквивалентных переходных сопротивлений исправной (условно исправной) и поврежденной жил.

Значения переходных сопротивлений и их отношений устанавливают по согласованию с потребителем в технических условиях на приборы конкретного типа.

1.2.5. Приборы должны обеспечивать измерение электрической емкости жилы до места обрыва и (или) ее отношения к электрической емкости исправной жилы при наличии сопротивления утечек в месте повреждения. Сопротивления утечек, а также связанные с ними изменения метрологических характеристик устанавливают в технических условиях на приборы конкретных типов.

1.2.1-1.2.5. (Измененная редакция, Изм. № 1).

1.2.6. (Исключен, Изм. № 1).

1.2.7. (Исключен, Изм. № 2).

1.2.8. (Исключен, Изм. № 1).
Приборы должны быть тепло-, холодо- и влагоустойчивыми, т. е. должны сохранять свои характеристики в пределах норм, установленных настоящим стандартом н техническими условиями на приборы конкретного типа, во время воздействия на них влияющей величины в рабочих климатических условиях применения по ГОСТ 22261-82, группа 5.
Приборы должны быть вибро- и ударопрочными, т. е. сохранять свои характеристики в пределах норм, установленных настоящим стандартом и техническими условиями на приборы конкретного типа, после воздействия вибрации и ударов в рабочих условиях применения по ГОСТ 22261-82, группа 5.
В технических условиях наприборы конкретного типа по согласованию с потребителем устанавливает требования по устойчивости приборов к воздействию пыли и брызг.
Приемо-сдаточные испытания проводят методом сплошного контроля в нормальных условиях применения на соответствие требованиям пп. 1.3.1, 1.6.1, 1.6.2, 1.8.10, 1.8.11, 1.12.1-1.12.5, а также на соответствие другим требованиям, если это оговорено в технических условиях на приборы конкретного типа.

При испытаниях основная погрешность приборов не должна превышать 0,8 предела допускаемого значения основной погрешности.

На приборы, принятые ОТК, оформляют паспорт (формуляр) и ставят клеймо или пломбу в предусмотренном конструкторской документацией месте.

2.4. Периодические испытания следует проводить нe реже раза в год на соответствие всем требованиям настоящего стандарта (кроме требований надежности и п. 1.6.1), а также технических условий на приборы конкретного типа.

Число приборов, предъявляемых на периодические испытания, должно быть не менее двух, выбранных из числа прошедших приемо-сдаточные испытания.

Состав и последовательность испытаний устанавливают в технических условиях на приборы конкретного типа.

Проверка соответствия приборов требованиям конструкторской документации и безопасности должна предшествовать началу испытаний.

2.5. Отказы приборов при периодических испытаниях по причинам единичных выходов из строя элементов электронной техники, используемых в режимах, установленных в технических условиях на них, не могут служить основанием для прекращения испытаний, если это не вызвано дефектом конструкции или нарушением технологического процесса изготовления. Вышедшие из строя элементы электронной техники заменяют новыми и испытания продолжают по прерванному и последующим видам испытаний.

2.6. Типовые испытания проводят для оценки целесообразности изменений, вносимых в конструкцию или технологию изготовления приборов.

Испытания проводят по программе, составленной с учетом изменении, внесенных в конструкцию или технологию изготовления приборов, согласованной с разработчиком и утвержденной руководством предприятия-изготовителя.

2.7. Испытания приборов на надежность следует проводить не реже одного раза в пять лет. Виды отказов и параметры, по которым определяют отказы, должны быть установлены в технических условиях на приборы конкретного типа.

Видами отказов являются:

погрешность приборов, выходящая за пределы допускаемых значений;

значение сопротивления изоляции электрических цепей относительно корпуса ниже нормы;

наличие механических повреждений, обусловленных недостатками конструкции приборов.

ГОСТ Р 50778-95 Измерители затуханий кабельных линий

ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий стандарт распространяется на измерительные приборы, предназначенные для измерения рабочего и переходного затуханий в узлах аппаратуры и кабельных цепях цифровых систем передачи (ЦСП).

Измерительные приборы используют для измерения и контроля:

- затуханий и переходных затуханий кабельных цепей на элементарных кабельных участках ЦСП;

- входных и выходных узлов линейных и станционных регенераторов и необслуживаемых регенерационных пунктов.

Стандарт устанавливает типы и основные параметры измерителей затуханий кабельных линий (ИЗКЛ).

Стандарт не распространяется на:

- встраиваемые в изделия и не предназначенные для самостоятельного эксплуатационного применения ИЗКЛ;

- многопараметрические приборы (типа кабельных тестеров и индикаторов).
2 НОРМАТИВНЫЕ ССЫЛКИ

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 16263-70 ГСИ. Метрология. Термины и определения

ГОСТ 16465-70 Сигналы радиотехнические измерительные. Термины и определения.
3 ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ

ЦСП — цифровые системы передачи

ИЗКЛ — измерители затуханий кабельных линий

ПСП — псевдослучайная последовательность

fн — номинальное значение частоты генерируемых синусоидальных или импульсных сигналов тактовой частоты

N — число элементов в одном периоде испытательной ПСП.
4 ТИПЫ

4.1 По методу измерения значения затухания устанавливают два типа ИЗКЛ:

- ИЗКЛ-1 — средство измерения рабочего и переходного затуханий методом измерения уровня измерительного сигнала (аналоговый метод);

- ИЗКЛ-2 — средство измерения рабочего и переходного затуханий методом косвенного определения уровня измерительного сигнала (цифровой метод).

4.2 В состав ИЗКЛ-1 должны входить генератор синусоидального сигнала и селективный измеритель уровня.

В состав ИЗКЛ-2 должны входить генератор испытательной псевдослучайной последовательности и измеритель уровня широкополосный.

ИЗКЛ-1 и ИЗКЛ-2 используют для измерения и контроля затуханий и переходных затуханий кабельных цепей на элементарных кабельных участках ЦСП, входных и выходных узлов линейных и станционных регенераторов с перерывом связи.

ГОСТ Р 50839-2000 Совместимость технических средств электромагнитная. Устойчивость средств вычислительной техники

1 Область применения

Настоящий стандарт распространяется на вновь разрабатываемые, изготавливаемые, модернизируемые и импортируемые средства вычислительной техники и информатики (далее в тексте — СВТИ), подключаемые к низковольтным электрическим сетям переменного тока частотой 50 Гц:

- электронные вычислительные машины;

- вычислительные комплексы и системы;

- устройства центральные вычислительных машин, комплексов, систем и сетей (процессоры, мультипроцессоры, транспьютеры, серверы, контроллеры и др.);

- периферийные устройства (внешние запоминающие устройства, устройства ввода-вывода, отображения и др.);

- рабочие станции;

- сервисные устройства и др.

Стандарт устанавливает виды испытаний СВТИ на устойчивость к электромагнитным помехам (помехам), степени жесткости испытаний для каждого вида, критерии качества функционирования СВТИ при испытаниях, а также соответствующие методы испытаний.

Требования устойчивости к помехам персональных электронных вычислительных машин — по ГОСТ Р 50628.

Настоящий стандарт не распространяется на средства связи.

Требования настоящего стандарта являются обязательными.
2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 19542-93 Совместимость средств вычислительной техники электромагнитная. Термины и определения

ГОСТ 21552-84 Средства вычислительной техники. Общие технические требования. Правила приемки, методы испытаний. Маркировка, упаковка, транспортирование и хранение

ГОСТ 30372-95/ГОСТ Р 50397-92 Совместимость технических средств электромагнитная. Термины и определения

ГОСТ Р 50628-2000 Совместимость технических средств электромагнитная. Устойчивость машин электронных вычислительных персональных к электромагнитным помехам. Требования и методы испытаний

ГОСТ Р 50648-94 (МЭК 1000-4-8-93) Совместимость технических средств электромагнитная. Устойчивость к магнитному полю промышленной частоты. Технические требования и методы испытаний

ГОСТ Р 51317.4.2-99 (МЭК 61000-4-2-95) Совместимость технических средств электромагнитная. Устойчивость к электростатическим разрядам. Требования и методы испытаний

ГОСТ Р 51317.4.3-99 (МЭК 61000-4-3-95) Совместимость технических средств электромагнитная. Устойчивость к радиочастотному электромагнитному полю. Требования и методы испытаний

ГОСТ Р 51317.4.4-99 (МЭК 61000-4-4-95) Совместимость технических средств электромагнитная. Устойчивость к наносекундным импульсным помехам. Требования и методы испытаний

ГОСТ Р 51317.4.5-99 (МЭК 61000-4-5-95) Совместимость технических средств электромагнитная. Устойчивость к микросекундным импульсным помехам большой энергии. Требования и методы испытаний

ГОСТ Р 51317.4.6-99 (МЭК 61000-4-6-96) Совместимость технических средств электромагнитная. Устойчивость к кондуктивным помехам, наведенным радиочастотными электромагнитными полями. Требования и методы испытаний

ГОСТ Р 51317.4.11-99 (МЭК 61000-4-11-94) Совместимость технических средств электромагнитная. Устойчивость к динамическим изменениям напряжения электропитания. Требования и методы испытаний

ГОСТ Р 51318.24-99 (СИСПР 24-97) Совместимость технических средств электромагнитная. Устойчивость оборудования информационных технологий к электромагнитным помехам. Требования и методы испытаний
3 Определения

В настоящем стандарте применяют термины, установленные в ГОСТ 19542, ГОСТ 21552, ГОСТ 30372/ГОСТ Р 50397 и [1].
4 Требования
4.1 Общие положения

4.1.1 Для обеспечения работоспособности в условиях эксплуатации СВТИ должны соответствовать установленным в настоящем стандарте требованиям устойчивости к помехам указанных в настоящем пункте видов.

4.1.1.1 Электростатические разряды — по ГОСТ Р 51317.4.2.

4.1.1.2 Наносекундные импульсные помехи в портах электропитания переменного тока и ввода-вывода сигналов — по ГОСТ Р 51317.4.4.

4.1.1.3 Микросекундные импульсные помехи большой энергии в портах электропитания и ввода-вывода сигналов — по ГОСТ Р 51317.4.5.

4.1.1.4 Динамические изменения напряжения электропитания (прерывания, провалы, выбросы) — по ГОСТ Р 51317.4.11.

4.1.1.5 Магнитное поле промышленной частоты — по ГОСТ Р 50648.

4.1.1.6 Радиочастотное электромагнитное поле — по ГОСТ Р 51317.4.3.

4.1.1.7 Кондуктивные помехи, наведенные радиочастотными электромагнитными полями, — по ГОСТ Р 51317.4.6.
4.2 Группы СВТИ по устойчивости к помехам, степени жесткости испытаний СВТИ на помехоустойчивость и критерии качества функционирования при испытаниях

4.2.1 В зависимости от устойчивости к воздействию помех указанных в 4.1.1 видов СВТИ подразделяют на группы I, II.

4.2.2 Требования помехоустойчивости и степени жесткости испытаний на помехоустойчивость СВТИ групп I и II при воздействии помех, указанных в 4.1.1 видов, а также критерии качества функционирования при испытаниях установлены в таблице 1.

В тех случаях, когда в таблице 1 допускаются два критерия качества функционирования (В, С), в технической документации СВТИ по согласованию между потребителем и изготовителем может быть установлен один из указанных критериев.

Критерии качества функционирования приведены в приложении А.

4.2.3 Группу СВТИ по устойчивости к помехам устанавливает изготовитель СВТИ применительно к условиям эксплуатации с учетом рекомендаций, приведенных в ГОСТ Р 51317.4.2, ГОСТ Р 51317.4.3, ГОСТ Р 51317.4.4, ГОСТ Р 51317.4.5, ГОСТ Р 51317.4.6, ГОСТ Р 51317.4.11, ГОСТ Р 50648.

4.2.4 Группа СВТИ по устойчивости к помехам должна быть указана в технической документации [технических заданиях (ТЗ), программах и методиках испытаний (ПМ), технических условиях (ТУ), эксплуатационной документации и др.] на СВТИ конкретного типа.

4.2.5 СВТИ группы I рекомендуются для применения в жилых и коммерческих зонах, СВТИ группы II — в промышленных зонах и в тех случаях, когда пользователю требуется более высокий уровень помехоустойчивости, чем установлен для группы I.
Методы испытаний
5.1 Общие положения

5.1.1 Для оценки соответствия установленным требованиям СВТИ подлежат испытаниям на помехоустойчивость.

5.1.2 Испытания на помехоустойчивость проводят:

- разрабатываемых и модернизируемых СВТИ — при приемочных испытаниях;

- серийно выпускаемых СВТИ — при периодических, типовых и сертификационных испытаниях;

- импортируемых СВТИ — при сертификационных испытаниях.

5.1.3 Приемочные и сертификационные испытания СВТИ на помехоустойчивость проводят испытательные лаборатории, аккредитованные в установленном порядке.

5.1.4 Отбор образцов СВТИ при испытаниях на помехоустойчивость проводят в соответствии со следующими требованиями:

- при испытаниях опытных СВТИ отбирают 2%, но не менее трех образцов, если изготовлено более трех изделий, и все образцы, если изготовлено три и менее изделий;

- количество образцов, подвергаемых испытаниям на помехоустойчивость при периодических испытаниях, устанавливают в ТУ на СВТИ конкретного типа, при типовых испытаниях — в программе испытаний;

- для сертификационных испытаний СВТИ выбирают один образец. В обоснованных случаях по решению органа по сертификации число образцов может быть увеличено. СВТИ единичного производства испытывают каждое в отдельности.

5.1.5 При испытаниях СВТИ на помехоустойчивость в его состав должны входить все предусмотренные технические средства. Если СВТИ содержит идентичные технические средства, то допускается проводить испытания при наличии хотя бы одного технического средства.

5.1.6 При необходимости испытаний на помехоустойчивость отдельного технического средства, применяемого в составе СВТИ, его испытывают совместно с СВТИ, соответствующим требованиям помехоустойчивости, установленным настоящим стандартом.

5.1.7 При испытаниях на помехоустойчивость расположение и электрические соединения технических средств и кабелей, входящих в состав испытуемого СВТИ, должны соответствовать условиям, приведенным в технической документации на СВТИ.

Если расположение технических средств и кабелей не указано, то выбирают такое, которое соответствует типовому применению и при котором проявляется наибольшая восприимчивость СВТИ к воздействию помех конкретного вида.

5.1.8 При испытаниях на помехоустойчивость выбирают режим функционирования СВТИ, обеспечивающий наибольшую восприимчивость к воздействию помехи конкретного вида.

5.1.9 Технические средства, функционально взаимодействующие с испытуемым СВТИ при проведении испытаний на помехоустойчивость, допускается заменять имитаторами.

5.1.10 Технические средства, входящие в состав СВТИ при испытаниях на помехоустойчивость, режимы работы испытуемого СВТИ, порты СВТИ, подвергаемые воздействию, требования к применяемым имитаторам при испытаниях указывают:

- для опытных образцов — в программе испытаний;

- для серийных изделий — в ТУ;

- при сертификации СВТИ — в методике испытаний, разрабатываемой испытательной лабораторией.

5.1.11 Испытания СВТИ проводят при нормальных климатических условиях:

- температуре окружающего воздуха (25±10) °С;

- относительной влажности воздуха 45-80 %;

- атмосферном давлении 84,0-106,7 кПа (630-800 мм рт. ст.).

Примечание: В технической документации на СВТИ могут быть установлены иные требования.

5.1.12 При применении для контроля СВТИ при испытаниях на помехоустойчивость вспомогательных технических средств последние должны быть защищены от влияния испытательных воздействий.

5.1.13 При проведении сертификационных испытаний СВТИ на помехоустойчивость уровень воздействующей помехи устанавливают без превышения регламентированного значения. Качество функционирования СВТИ при испытаниях должно соответствовать критерию, установленному в таблице 1.

5.1.14 При испытаниях СВТИ помехи различного вида должны подаваться поочередно.

5.1.15 При испытаниях СВТИ, содержащих несколько устройств, имеющих собственные кабели электропитания, помехи на порты электропитания этих устройств должны подаваться поочередно.

При испытаниях СВТИ помехи на порты ввода-вывода сигналов должны подаваться поочередно.

5.1.16 Протоколы испытаний СВТИ на помехоустойчивость оформляют в соответствии с приложением Б.
5.2 Испытания на устойчивость к воздействию электростатических разрядов

Испытательное оборудование и методы испытаний — в соответствии с требованиями

ГОСТ Р 51317.4.2.
5.3 Испытания на устойчивость к воздействию наносекундных импульсных помех в портах электропитания и ввода-вывода сигналов

Испытательное оборудование и методы испытаний — в соответствии с требованиями ГОСТ Р 51317.4.4.
5.4 Испытания на устойчивость к воздействию микросекундных импульсных помех большой энергии в портах электропитания и ввода-вывода сигналов

Испытательное оборудование и методы испытаний — в соответствии с требованиями ГОСТ Р 51317.4.5.
5.5 Испытания на устойчивость к воздействию динамических изменений напряжения электропитания

Испытательное оборудование и методы испытаний — в соответствии с требованиями ГОСТ Р 51317.4.11.
5.6 Испытания на устойчивость к воздействию магнитного поля промышленной частоты

Испытательное оборудование и методы испытаний — в соответствии с требованиями ГОСТ Р 50648.
5.7 Испытания на устойчивость к воздействию радиочастотного электромагнитного поля

Испытательное оборудование и методы испытаний — в соответствии с требованиями ГОСТ Р 51317.4.3.
5.8 Испытания на устойчивость к воздействию кондуктивных помех, наведенных радиочастотными электромагнитными полями

Испытательное оборудование и методы испытаний — в соответствии с требованиями ГОСТ Р 51317.4.6.
6 Оценка результатов испытаний

Требования устойчивости СВТИ к помехам считают выполненными, если для помех всех видов все испытанные образцы соответствуют требованиям настоящего стандарта.
7 Требования безопасности

Испытания СВТИ на помехоустойчивость должны проводиться с соблюдением требований безопасности, установленных в стандартах системы ССБТ и в стандартах на методы испытаний.

ГОСТ 23784-98 Соединители низкочастотные низковольтные и комбинированые

1 Область применения

Настоящий стандарт распространяется на низкочастотные низковольтные (на напряжение до 1500 В) и комбинированные соединители ручного управления (далее — соединители).

Виды климатических исполнений соединителей — УХЛ 1.1, УХЛ 2.1, УХЛ 5.1 и (или) В 1.1, В 2.1, В 5.1 по ГОСТ 15150. Вид климатического исполнения устанавливают в стандартах или ТУ на соединители конкретных типов.

Обязательные требования к качеству соединителей, обеспечивающие их безопасность для жизни, здоровья и имущества населения, охраны окружающей среды, изложены в разделе 6.

Требования к радиочастотным контактам комбинированных соединителей установлены в стандартах или нормативных документах (НД) на соединители конкретных типов.

В стандартах или НД на соединители конкретных типов допускается устанавливать дополнительные требования к соединителям.
2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 9.303-84 Единая система защиты от коррозии и старения. Покрытия металлические и неметаллические неорганические. Общие требования к выбору

ГОСТ 20.57.406-81 Комплексная система контроля качества. Изделия электронной техники, квантовой электроники и электротехнические. Методы испытаний

ГОСТ 14192-96 Маркировка грузов

ГОСТ 15150-69 Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды

ГОСТ 18242-72* Статистический приемочный контроль по альтернативному признаку. Планы контроля

* На территории Российской Федерации действует ГОСТ Р 50779.71-99 (ИСО 2859-1-89)

ГОСТ 19104-88 Соединители низкочастотные на напряжение до 1500 В цилиндрические. Основные параметры и размеры

ГОСТ 21493-76 Изделия электронной техники. Требования по сохраняемости и методы испытаний

ГОСТ 21930-76 Припои оловянно-свинцовые в чушках. Технические условия

ГОСТ 23088-80 Изделия электронной техники. Требования к упаковке, транспортированию и методы испытаний

ГОСТ 24297-87 Входной контроль продукции. Основные положения

ГОСТ 24606.1-81 Изделия коммутационные, установочные и соединители электрические. Методы контроля электрической прочности изоляции.

ГОСТ 24606.2-81 Изделия коммутационные, установочные и соединители электрические. Методы измерения сопротивления изоляции

ГОСТ 24606.3-82 Изделия коммутационные, установочные и соединители электрические. Методы измерения сопротивления контакта и динамической и статической нестабильности переходного сопротивления контакта

ГОСТ 24606.4-83 Изделия коммутационные, установочные и соединители электрические. Методы определения допустимой токовой нагрузки

ГОСТ 24606.5-83 Изделия коммутационные, установочные и соединители электрические. Методы измерения емкости

ГОСТ 24606.6-83 Изделия коммутационные, установочные и соединители электрические. Методы проверки работоспособности в цепях с низким уровнем сигнала

ГОСТ 24606.7-84 Изделия коммутационные, установочные и соединители электрические. Метод проверки требований к конструкции

ГОСТ 25359-82 Изделия электронной техники. Общие требования по надежности и методы испытаний

ГОСТ 25360-82 Изделия электронной техники. Правила приемки

ГОСТ 25467-82 Изделия электронной техники. Классификация по условиям применения и требования по стойкости к внешним воздействующим факторам

ГОСТ 26895-86 Радиокомпоненты электромеханические. Метод испытания закрепления контактов

ГОСТ 26896-86 Радиокомпоненты электромеханические. Метод испытания прочности закрепления изолятора в корпусе в осевом направлении

ГОСТ 27277-87 Радиокомпоненты электромеханические. Метод проверки удерживающего усилия упругих контактов

ГОСТ 27278-87 Радиокомпоненты электромеханические. Метод испытания прочности кабельного зажима к изгибу

ГОСТ 27279-87 Радиокомпоненты электромеханические. Метод испытания прочности кабельного зажима к вращению кабеля

ГОСТ 27280-87 Радиокомпоненты электромеханические. Метод испытания прочности кабельного зажима к скручиванию кабеля

ГОСТ 27281-87 Радиокомпоненты электромеханические. Метод испытания прочности кабельного зажима к натяжению кабеля

ГОСТ 27597-88 Изделия электронной техники. Метод оценки коррозионной стойкости

ГОСТ 28218-89 (МЭК 68-2-32-75) Основные методы испытаний на воздействие внешних факторов. Часть 2. Испытания. Испытание Ed: Свободное падение

ГОСТ 30668-2000 Изделия электронной техники. Маркировка
3 Определения

В настоящем стандарте применяют следующий термин с соответствующим определением:

соединитель электрический: Электромеханическое устройство, присоединяемое к проводникам, для соединения и разъединения электрических цепей путем сочленения и расчленения с соответствующим устройством.
4 Классификация, основные параметры и размеры

4.1 Основные параметры и размеры прямоугольных соединений должны соответствовать нормам и значениям, установленным в стандартах или НД на соединители конкретных типов, цилиндрических соединителей — в соответствии с ГОСТ 19104.

4.2 Условное обозначение соединителей при заказе и в конструкторской документации другой продукции должно соответствовать указанному в стандартах или НД на соединители конкретных типов согласно действующим НД.

Условное обозначение, присвоенное соединителю, изменению не подлежит.
5 Общие технические требования

5.1 Соединители следует изготовлять в соответствии стребованиями настоящего стандарта, а также стандартов или НД на соединители конкретных типов по рабочей конструкторской и технологической документации, утвержденной в установленном порядке.
5.2 Требования к конструкции

5.2.1 Общий вид, габаритные, установочные и присоединительные размеры соединителей должны соответствовать требованиям, установленным в стандартах или НД на соединители конкретных типов.

5.2.2 Внешний вид соединителей должен соответствовать образцам внешнего вида, отобранным и утвержденным в установленном порядке, либо, при необходимости, описаниям этих образцов.

Срок действия образцов — два года. Образцы потребителям не высылают. Допустимые изменения внешнего вида соединителей в процессе эксплуатации и хранения должны быть установлены в стандартах или НД на соединители конкретных типов.

5.2.3 Масса соединителей не должна превышать значений, установленных в стандартах или НД на соединители конкретных типов.

5.2.4 Усилие расчленения контактов с контрольным калибром должно быть не менее норм, установленных в стандартах или НД на соединители конкретных типов.

Допустимое изменение усилия расчленения контактов в процессе эксплуатации и хранения должно быть установлено в стандартах или НД на соединители конкретных типов.

5.2.5 Усилия расчленения и (или) сочленения соединителей должны быть не более норм, установленных в стандартах или НД на соединители конкретных типов.

Допустимые изменения усилий сочленения и (или) расчленения соединителей в процессе эксплуатации и хранения устанавливают в стандартах или НД на соединители конкретных типов.

5.2.6 Момент вращения накидной гайки или байонетной обоймы цилиндрических соединителей не должен превышать значений, установленных в стандартах или НД на соединители конкретных типов.

5.2.7 Крепление контакта в изоляторе должно выдерживать усилие не менее десятикратного минимального усилия расчленения контактов.

5.2.8 Соединители с извлекаемыми контактами должны допускать не менее пяти вставлений и извлечений контактов.

5.2.9 Конструкция хвостовиков контактов соединителей должна обеспечивать присоединение проводников пайкой, обжимом, накруткой, врезанием, сваркой. Конкретный способ устанавливают в стандартах или НД на соединители конкретных типов.

5.2.10 Хвостовики контактов, подлежащие соединению пайкой, должны обладать паяемостью без дополнительного обслуживания в течение времени, выбранного из ряда: 12, 18, 24 мес с даты изготовления при соблюдении режимов и правил выполнения пайки, а также правил хранения в соответствии с разделом 8.

5.2.11 Соединители, предназначенные для монтажа пайкой, должны быть теплостойкими при пайке.

5.2.12 Конструкцией соединителей, к которым предъявляется требование по динамической нестабильности переходного сопротивления контактов, должно обеспечиваться отсутствие резонансных частот с верхней частотой 40 Гц.

5.2.13 Соединители должны обеспечивать сочленение в одном заданном положении (поляризация). Взаимодействие поляризующих элементов должно происходить раньше, чем произойдет соприкасание контактов.

5.2.14 Конструкцией соединителей должна обеспечиваться фиксация сочленения положения. Фиксация сочлененного положения врубных соединителей должна быть обеспечена элементами аппаратуры (при необходимости).

5.2.15 Крепление изолятора в корпусе соединителя (при его наличии) должно выдерживать усилие в осевом направлении не менее десятикратного максимального значения усилия расчленения соединителей. Требование не распространяется на соединители с принудительным обжатием контактов.

5.2.16 Температура перегрева соединителей не должна превышать значений, установленных в стандартах или НД на соединители конкретных типов из следующего ряда: 10, 20, 30, 40, 50 °С.

5.2.17 Соединители должны выдерживать сочленения-расчленения, число которых установлено в стандартах или НД на соединители конкретных типов из следующего ряда: 100, 250, 500, 1000, 1500, 2000.

5.2.18 Устройство для крепления (зажима) кабеля (жгута проводов) должно обеспечивать сопротивление кратковременному натяжению присоединенного кабеля с усилием не менее 50 Н (5 кгс), направленным вдоль оси соединителя.

5.2.19 Кабельный зажим не должен вызывать повреждения наружной части кабеля (жгута проводов) при его вращении.

5.2.20 Устройство для крепления (зажима) кабеля (жгута проводов) должно обеспечивать сопротивление изгибу присоединенного кабеля (жгута проводов).

5.2.21 Устройство для крепления (зажима) кабеля (жгута проводов) должно быть механически прочным и должно обеспечивать сопротивление скручиванию присоединительного кабеля (жгута проводов).

Примечание — Требования, установленные 5.2.17-5.2.20, распространяются на кабельные соединители в том случае, если они указаны в техническом задании на разработку или НД на соединители конкретных типов.
5.3 Требования к электрическим параметрам и режимам эксплуатации

5.3.1 Сопротивление контактов соединителей должно соответствовать нормам, установленным в стандартах иди НД на соединители конкретных типов.

5.3.2 Нестабильность переходного сопротивления контактов не должна превышать нормы, установленной в стандартах или НД на соединители конкретных типов.

Примечание — Необходимость предъявления требования к нестабильности переходного сопротивления контактов устанавливают в стандартах или НД на соединители конкретных типов.

5.3.3 Сопротивление цепи экранировки цилиндрических соединителей (экранированных) не должно превышать значения, установленного в стандартах или НД на соединители конкретных типов.

5.3.4 Емкость между любыми соседними контактами не должна превышать нормы, установленной в стандартах или НД на соединители конкретных типов из следующего ряда: 2; 2,5; 3; 5; 10 пФ.

ГОСТ 26271-84 Проволока порошковая для дуговой сварки углеродистых и низколегированных сталей

КЛАССИФИКАЦИЯ И СОРТАМЕНТ

1.1. По условиям применения порошковая проволока подразделяется на газозащитную (ПГ), применяемую для сварки в углекислом газе или газовых смесях, и самозащитную (ПС), сварка которой осуществляется без дополнительной защиты.

1.2. В соответствии с допустимыми пространственными положениями сварки и условиями формирования сварного шва проволока подразделяется:

для нижнего Н;

для нижнего, горизонтального (на вертикальной плоскости) — Г;

для нижнего, горизонтального, вертикального — В;

для всех — У;

для горизонтального с использованием принудительного формирования — ГП;

для вертикального с использованием принудительного формирования — ВП;

для всех положений с использованием принудительного формирования — УП.
ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

2.1. Порошковая проволока должна изготовляться в соответствии с требованиями настоящего стандарта по технологическим регламентам, утвержденным в установленном порядке.

2.2. Порошковая проволока состоит из оболочки и порошка-наполнителя. Марка проволоки, ее конструкция, химический состав и свойства оболочки и порошка-наполнителя устанавливаются нормативно-технической документацией.

2.3. Поверхность проволоки должна быть без вмятин, надрывов, без следов коррозии, масла и других загрязнений. Допускаются продольные риски и следы волочильной смазки.

2.4. Все компоненты, наполняющие порошковую проволоку, должны равномерно, без пропусков, распределяться по всей длине проволоки с тем, чтобы сварочно-технологические свойства проволоки и свойства полученного металла шва и наплавленного металла по мере применения проволоки в процессе сварки отвечали требованиям нормативно-технической документации на конкретные марки проволоки.

2.5. Номинальная величина коэффициента заполнения (отношение массы порошка-наполнителя к массе проволоки, выраженное в процентах и величина его предельных отклонений указываются в нормативно-технической документации на конкретные марки проволоки.

2.6. Сварочно-технологические свойства проволоки проверяют наплавкой валика на пластину и сваркой таврового или стыкового соединений.

ГОСТ 30430-96 Сварка дуговая конструкционных чугунов. Требования к технологическому процессу

Область применения

Настоящий стандарт распространяется на технологические процессы ручной и механизированной дуговой сварки, применяемые при исправлении дефектов чугунного литья, восстановлении поврежденных чугунных деталей и создании литосварных изделий из чугуна.
2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие нормативные документы:

ГОСТ 12.1.005-88 Система стандартов безопасности труда. Общие санитарно-гигиенические требования к воздуху рабочей зоны

ГОСТ 12.2.032-78 Система стандартов безопасности труда. Рабочее место при выполнении работ сидя. Общие эргономические требования

ГОСТ 12.2.033-78 Система стандартов безопасности труда. Рабочее место при выполнении работ стоя. Общие эргономические требования

ГОСТ 12.3.002-75 Система стандартов безопасности труда. Процессы производственные. Общие требования безопасности

ГОСТ 12.3.003-86 Система стандартов безопасности труда. Работы электросварочные. Требования безопасности

ГОСТ 12.3.004-75 Система стандартов безопасности труда. Термическая обработка металлов. Общие требования безопасности

ГОСТ 12.3.009-76 Система стандартов безопасности труда. Работы погрузочно-разгрузочные. Общие требования безопасности

ГОСТ 12.4.028-76 Система стандартов безопасности труда. Респираторы ШБ-1 «Лепесток». Технические условия

ГОСТ 12.4.034-85 Система стандартов безопасности труда. Средства индивидуальной защиты органов дыхания. Классификация и маркировка

ГОСТ 12.4.035-78 Система стандартов безопасности труда. Щитки защитные лицевые для электросварщиков. Технические условия

ГОСТ 12.4.123-83 Система стандартов безопасности труда. Средства коллективной защиты от инфракрасных излучений. Общие технические требования

ГОСТ 17.2.3.02-78 Охрана природы. Атмосфера. Правила установления допустимых выбросов вредных веществ промышленными предприятиями

ГОСТ 1215-79 Отливки из ковкого чугуна. Общие технические условия

ГОСТ 1412-85 Чугун с пластинчатым графитом для отливок. Марки

ГОСТ 1585-85 Чугун антифрикционный для отливок. Марки

ГОСТ 3242-79 Соединения сварные. Методы контроля качества

ГОСТ 6996-66 Сварные соединения. Методы определения механических свойств

ГОСТ 7293-85 Чугун с шаровидным графитом для отливок. Марки

ГОСТ 9466-75 Электроды покрытые металлические для ручной дуговой сварки сталей и наплавки. Классификация и общие технические условия

ГОСТ 14651-78 Электрододержатели для ручной дуговой сварки. Технические условия

ГОСТ 16130-90 Проволока и прутки из меди и сплавов на медной основе сварочные. Технические условия

ГОСТ 18130-79 Полуавтоматы для дуговой сварки плавящимся электродом. Общие технические условия

ГОСТ 19200-80 Отливки из чугуна и стали. Термины и определения дефектов

ГОСТ 21694-94 Оборудование сварочное механическое. Общие технические условия

ГОСТ 26271-84 Проволока порошковая для дуговой сварки углеродистых и низколегированных сталей. Общие технические условия

ГОСТ 26358-84 Отливки из чугуна. Общие технические условия

ГОСТ 28394-89 Чугун с вермикулярным графитом для отливок. Марки

№ 1009-73 Санитарные правила при сварке, наплавке и резке металлов
3 Определения

В настоящем стандарте применяют следующие термины с соответствующими определениями:

3.1 графитизирующие элементы: Химические элементы, способствующие выделению графитной фазы при кристаллизации чугуна.

3.2 литосварное изделие: Изделие, полученное сваркой литых (чугунных) заготовок.

3.3 модифицирующие элементы: Химические элементы, обеспечивающие изменение (модифицирование) формы графита от пластинчатой до шаровидной при кристаллизации чугуна.

3.4 подформа: Форма, изготовленная из формовочного материала по месту дефекта на отливке, для удержания жидкого металла при заварке дефекта и придания восстановленной части отливки требуемой формы и размеров.

Определение литейных дефектов по ГОСТ 19200.
4 Обозначения и сокращения

Iсв — сила сварочного тока, А;

Uд — напряжение на сварочной дуге, В;

Vcв — скорость сварки, м/ч;

Vп.пр. — скорость подачи электродной проволоки, м/ч;

sв — временное сопротивление разрыву, МПа;

d — относительное удлинение, %;

НД — нормативный документ.
5 Требования
5.1 Требования к отливкам, деталям, заготовкам и материалам

Дуговой сварке подлежат отливки, детали и заготовки из серых чугунов (с пластинчатой формой графита) всех марок по ГОСТ 1412, ковких (с графитом хлопьевидной формы) всех марок по ГОСТ 1215, антифрикционных (с пластинчатой формой графита) всех марок по ГОСТ 1585, высокопрочных (с червеобразным графитом) всех марок по ГОСТ 28394 и высокопрочных (с шаровидным графитом) всех марок по ГОСТ 7293.

В качестве электродных материалов при дуговой сварке чугуна используют покрытые электроды (далее — электроды), порошковые проволоки и проволоки сплошного сечения на основе черных или цветных металлов.

Электродные материалы при сварке чугуна должны обеспечивать получение металла шва (наплавленного металла) сварного соединения, по химическому составу и структуре аналогичного основному металлу или (в случае применения электродов на основе никеля, меди или железа) более пластичного, чем чугун, сплава.

Типы металла шва (наплавленного металла) и соответствующие им рекомендуемые марки и сортамент сварочных материалов для дуговой сварки чугуна приведены в таблице А.1.

5.1.1 Требования к составу, характеристикам, свойствам свариваемых материалов

Химический состав и механические свойства свариваемых конструкционных чугунов должны соответствовать требованиям ГОСТ 26358.

Электроды для ручной дуговой сварки чугуна в части размеров и прочности покрытия, сварочно-технологических свойств, упаковки, хранения и транспортирования должны удовлетворять требованиям ГОСТ 9466.

Порошковые проволоки для механизированной дуговой сварки чугуна в части состояния поверхности, наполнения порошком, размеров и массы мотка, сварочно-технологических свойств, упаковки, хранения и транспортирования должны удовлетворять требованиям ГОСТ 26271.

Проволоки сплошного сечения для механизированной дуговой сварки чугуна в части состояния поверхности, размеров и массы мотка, сварочно-технологических свойств, упаковки, хранения и транспортирования должны удовлетворять требованиям ГОСТ 16130.

Формовочная смесь, используемая для изготовления подформ, должна обеспечивать удержание ванны жидкого металла и получение требуемых формы и размеров заваренного дефекта в соответствии с требованиями НД на отливку или деталь.

5.1.2 Требования к способам и порядку подготовки материалов, заготовок

Удаление формовочной смеси, пригара, ржавчины, накипи, масел и других загрязнений на отливках, деталях или заготовках осуществляют механической зачисткой, химическим травлением, выжиганием с помощью газового пламени, кипячением в щелочных ваннах и другими способами. Выбор способа очистки и порядок его выполнения устанавливаются НД на чугунные отливки, детали или заготовки.

Подготовка чугунных заготовок под сварку должна включать:

зачистку поверхностей заготовок в месте сварки;

выполнение разделки;

обезжиривание кромок разделки;

сборку заготовок с применением струбцин или прихваток;

установку в нужное положение.

Подготовка чугунных отливок под заварку дефектов должна включать:

зачистку поверхностей отливок в месте литейного дефекта;

разделку дефектов до их полного удаления;

изготовление подформ по месту сквозных или краевых дефектов.

Подготовка поврежденных чугунных деталей под восстановительную сварку должна включать:

зачистку поверхностей деталей в месте повреждения;

выполнение разделки;

засверловку концов трещин;

обезжиривание кромок разделки;

сборку с отбитыми частями или вставками с применением прихваток;

установку в нужное положение.

При подготовке чугунных заготовок под сварку литосварных изделий, а также при разделке трещин на поврежденных деталях с толщиной стенки до 30 мм должны применяться только механические способы, а способы термической резки (строжки) не допускаются.

При подготовке отливок с толщиной стенки более 30 мм для исправления литейных дефектов заваркой допускается применение для разделки воздушно-дуговой резки (строжки) или специализированных электродов для резки.

Концы трещин на поврежденных деталях из чугуна следует засверлить. Для надежного выявления концов трещин следует применять травление зачищенной поверхности слабыми растворами (2 — 4 %) азотной или соляной кислоты. Порядок выполнения засверловки и травления трещин определяется НД на деталь.

Подформу на дефектной части отливки выполняют из огнеупорной формовочной смеси следующего состава: песок кварцевый — 4 части, глина белая огнеупорная — 4 части, графит — 2 части. Порядок подготовки смеси и нанесения ее на отливку устанавливается НД на отливки. Для изготовления подформ допускается использовать также графитовые пластины, огнеупоры и др.

5.1.3 Требования к методам контроля материалов, заготовок

Входной контроль материалов и заготовок осуществляют по параметрам и методам, установленным в НД на продукцию.

При подготовке чугунных заготовок под сварку в литосварное изделие проверяют:

соответствие марок чугуна заготовок марке чугуна литосварного изделия;

отсутствие внешних литейных дефектов: трещин, раковин, усадочной пористости, рыхлот, спаев и др.;

соответствие формы и внешнего вида заготовок чертежам техническим условиям.

При сборке заготовок под сварку в литосварное изделие проверяют:

соответствие формы и основных размеров собранного под сварку изделия рабочим чертежам;

соответствие зазора в корне разделки под сварку заданному значению согласно НД на сварное изделие;

отсутствие следов масла, жиров и других загрязнений на кромках разделки.

5.1.4 Требования к маркировке материалов, заготовок

Маркировка материалов и заготовок, а также последовательность нанесения дополнительных реквизитов маркировки должны быть указаны в НД на материалы и заготовки конкретных видов.

5.1.5 Нормы расхода материалов

Нормы расхода основных материалов должны быть указаны в НД на продукцию конкретных видов.

Ориентировочные нормы расхода сварочных материалов приведены в таблице А.2.
5.2 Требования к технологическому процессу

Основное требование к технологическому процессу дуговой сварки конструкционных чугунов — обеспечение равнопрочности сварных соединений и основного металла. Только в отдельных случаях, оговоренных в НД на отливки и детали, допускается ухудшение механических свойств сварных соединений (sв и d) до 25 % сравнительно с механическими свойствами основного металла.

Процессы ручной и механизированной дуговой сварки чугуна выполняют на постоянном токе прямой или обратной полярности. Проволоки сплошного сечения или порошковые проволоки должны подаваться в зону сварки непрерывно, без рывков и задержек. Коэффициент использования электродных материалов не должен превышать пределы, установленные в таблицах А.3, А.4.

5.2.1 Требования к составу и последовательности операций технологического процесса

5.2.1.1 Сварка изделий

Технологический процесс дуговой сварки литосварных изделий из чугуна включает операции:

предварительный подогрев заготовок в сборе;

сварку изделия;

контроль качества сварных соединений;

испытание литосварных изделий.

Предварительный подогрев заготовок, собранных под сварку, выполняют в электропечи или газовым пламенем.

Дуговую сварку изделий из чугуна осуществляют, в основном, механизированными методами с использованием проволок сплошного сечения: ПАНЧ-11, ПАНЧ-12, МН-25 и др. — без предварительного подогрева (или с предварительным подогревом изделия до температуры 200 — 300 °С) или порошковых проволок: ПП-АНЧ-5, ППСВ-7 и др. — с предварительным подогревом изделия до температуры 400 — 600 °С. Однако при сварке изделий из чугуна предпочтительно использование автоматизированных процессов дуговой сварки, так как они выполняются без перерывов при небольшом расходе электродных материалов. В случае многопроходной сварки процесс может прерываться на зачистку швов, кантовку изделия, изменение режима сварки.

В случае необходимости сварные изделия подвергают термической обработке (отжигу) для снятия остаточных сварочных напряжений. Режимы термической обработки устанавливают в соответствии с НД на сварное изделие.

Требования к контролю качества сварных соединений чугуна — в соответствии с п. 5.8.

5.2.1.2 Исправление литейных дефектов на отливках

Технологический процесс дуговой сварки (заварки) дефектов на чугунных отливках включает операции:

предварительный подогрев отливок;

сварку (заварку) дефектов;

контроль качества сварных соединений;

испытание отливок с исправленными дефектами.

Предварительный подогрев отливок с разделанными дефектами и подформами на них выполняют в электропечи, газовыми горелками или на горне с коксом.

Ручную дуговую сварку (заварку) дефектов осуществляют на чугунных отливках из серого чугуна с пластинчатым графитом электродами ЭЧ-1, ЭЧ-2, ЦЧ-5, на отливках из высокопрочного чугуна с шаровидным графитом — электродами ЭВЧ-1.

Механизированную дуговую сварку (заварку) дефектов на отливках из серого чугуна с пластинчатым графитом осуществляют с применением порошковых проволок ПП-АНЧ-2, ППСВ-7, на отливках из высокопрочного чугуна с шаровидным графитом — проволоки ПП-АНЧ-5.

Сварку (заварку) дефектов с предварительным подогревом отливок выполняют только в нижнем положении.

Дефекты с объемом наплавленного металла до 100000 мм3 заваривают непрерывно от краев к центру с подваркой усадки. Дефекты с большим объемом наплавленного металла разбивают на участки по форме в виде круга (диаметром 100 мм) или квадрата (100 ? 100 мм). Заварку начинают с участка, расположенного в наиболее глубоком месте. Далее заваривают (наплавляют) последовательно участки толщиной примерно 10 мм с небольшим перекрытием заваренных участков. Между заваркой отдельных участков делают небольшие перерывы для зачистки поверхности шва (наплавки).

Замедленное охлаждение отливки с заваренным дефектом осуществляют с использованием тех же средств, которые применяют для предварительного подогрева.

В случае необходимости отливки с исправленными дефектами подвергают термической обработке (отжигу) для снятия остаточных сварочных напряжений и обеспечения обрабатываемости сварных соединений механическим инструментом. Режимы термической обработки устанавливают в соответствии с НД на отливки.

Требования к контролю качества чугунных отливок с исправленными литейными дефектами в соответствии с п. 5.8.

5.2.1.3 Восстановление деталей

Технологический процесс дуговой сварки разрушенных или изношенных чугунных деталей включает операции:

сварку поврежденных деталей;

контроль качества сварных соединений;

испытание восстановленных деталей.

Предварительный подогрев при дуговой сварке поврежденных чугунных деталей, как правило, не применяют.

Ручную дуговую сварку поврежденных чугунных деталей осуществляют с использованием покрытых электродов на никелевой (ОЗЧ-3, ОЗЧ-4, МНЧ-2), никележелезной (ОЗЖН-1), медной (ОЗЧ-2, ОЗЧ-6) или железной (ЦЧ-4) основе. Сварку ведут швами длиной 30 — 50 мм с перерывами на охлаждение и зачистку швов. Длинные трещины разбивают на участки длиной 50 — 60 мм и сварку осуществляют по участкам в определенном порядке в соответствии с НД на восстанавливаемую деталь. Таким же образом ведут сварку отбитых частей или вставок. Сварные швы, выполненные электродами со стержнем из никелевых сплавов, как правило, проковывают молотком непосредственно после обрыва дуги. При использовании электродов с медным стержнем проковка швов обязательна.

Механизированную дуговую сварку поврежденных чугунных деталей осуществляют с использованием проволок сплошного сечения на медной (МН-25) или никелевой (ПАНЧ-11, ПАНЧ-12) основе. Сварку ведут швами длиной 60 — 80 мм (проволокой ПАНЧ-11 до 150 мм) с перерывами на охлаждение. Длинные трещины разбивают на участки длиной 80 — 100 мм и осуществляют сварку по участкам в определенном порядке в соответствии с НД на восстанавливаемую деталь. Допускается сварные швы проковывать.

В случае необходимости восстановленные детали подвергают термической обработке (отжигу) для снятия остаточных сварочных напряжений и обеспечения обрабатываемости сварных соединений механическим инструментом. Режимы термической обработки устанавливают в соответствии с НД на деталь.

Требования к контролю качества восстановленных сваркой чугунных деталей в соответствии с п. 5.8.

5.2.2 Требования к режимам и параметрам технологического процесса

Дуговую сварку конструкционных чугунов выполняют с использованием покрытых электродов, порошковых проволок и проволок сплошного сечения.

5.2.2.1 Режимы сварки покрытыми электродами

Рекомендуемые режимы ручной дуговой сварки чугуна и коэффициенты использования электродов приведены в таблице А.3.

5.2.2.2 Режимы сварки порошковыми проволоками

5.2.2.3 Режимы сварки проволоками сплошного сечения

Рекомендуемые режимы сварки чугуна проволоками сплошного сечения приведены в таблице А.5.
5.3 Требования к основному и вспомогательному технологическому оборудованию

5.3.1 Требования к основному технологическому сварочному оборудованию электродержатели для ручной дуговой сварки чугуна электродами диаметром 2 — 6 мм должны удовлетворять требованиям ГОСТ 14651.

При механизированной дуговой сварке чугуна проволоками сплошного сечения или порошковыми проволоками основное технологическое оборудование должно обеспечивать равномерную подачу электродной проволоки в зону сварки со скоростью ее плавления и поддержание на заданном уровне параметров режима сварки, в первую очередь сварочного тока и напряжения дуги в соответствии с ГОСТ 18130.

Скорость подачи проволоки сплошного сечения регулируют от 50 до 150 м/ч, а порошковой проволоки — от 80 до 350 м/ч.

Источники питания для механизированной дуговой сварки чугуна (сварочные преобразователи или выпрямители постоянного тока) должны иметь жесткую или пологопадающую внешнюю характеристику.

5.3.2 Требования к механическому и вспомогательному технологическому оборудованию

Механическое оборудование, применяемое при сварке литосварных изделий из чугуна, должно соответствовать требованиям ГОСТ 21694.

Требования к вспомогательному технологическому оборудованию устанавливают в конструкторской документации на изделие.
5.4 Требования к технологической оснастке

Требования к технологической оснастке устанавливают в конструкторской документации на изделие.
5.5 Требования к характеристикам рабочего места, производственного помещения

Участок для дуговой сварки чугуна должен быть расположен в хорошо освещенном вентилируемом помещении, по объему и площади соответствующем санитарным нормам.

Организация рабочих мест сварщиков должна соответствовать требованиям ГОСТ 12.2.032 и ГОСТ 12.2.033.

На участке должны быть расположены посты ручной и (или) механизированной дуговой сварки, устройство для предварительного, сопутствующего и последующего подогрева заготовок или отливок и деталей, оборудованное место для подготовки заготовок под сварку (разделка дефектов, изготовление подформы на разделанном дефекте и др.), оборудованное место для контроля качества сварных соединений, устройства для отвода и локализации выделяющихся при сварке аэрозолей.

В зависимости от массы чугунных заготовок, отливок или деталей участок следует размещать в зоне действия цехового крана достаточной грузоподъемности или других грузоподъемных механизмов.

Питание участка электроэнергией должно быть от отдельного распределительного щита мощностью 20 — 100 кВ?А (при количестве постов от 1 до 5).

На постах дуговой сварки чугуна не должно быть сквозняков.
5.6 Требования к контролю технологического процесса

Контроль выполняют на всех стадиях дуговой сварки чугуна от подготовки отливок, деталей и заготовок до контроля качества сварных соединений.

На стадии подготовки проверяют чистоту поверхностей, зачищенных под сварку: отсутствие на них загрязнений и дефектов литейного происхождения — раковин, пористости, засоров, микротрещин и др. Для этого применяют методы визуального контроля с использованием луп и увеличительных стекол, а также травление слабыми растворами кислот для более надежного выявления микротрещин.

Проверяют правильность подготовки разделок под сварку: угол раскрытия кромок, притупление и зазор в корне разделки, засверловку концов трещин.

Подформу на крупных литейных дефектах проверяют на обеспечение формы и размеров отливки после заварки дефекта согласно требованиям чертежа на изделие.

При выполнении сварки с предварительным подогревом заготовок или отливок требуемую температуру подогрева контролируют с точностью ±10 °С.

В процессе сварки проверяют напряжение и сварочный ток вольтметрами и амперметрами классом точности 0,5. Контроль тока и напряжения проводят в начале сварки, а при длительной заварке крупных дефектов порошковой проволокой — периодически через каждые 5 — 7 мин.
5.7 Требования к испытаниям

Требования к испытаниям устанавливают в конструкторской документации на изделие или восстановленную деталь (отливку).

Если литосварное изделие или восстановленная деталь (отливка) работают под давлением, то после сварки их подвергают гидравлическим испытаниям на герметичность сварных соединений избыточным давлением 0,2 — 1,0 МПа или «керосиновой пробе». Условия и параметры испытаний на герметичность устанавливают в НД на изделия или детали.
5.8 Требования к качеству продукции

Сварные соединения чугуна, выполненные дуговой сваркой, должны обеспечивать служебные характеристики, установленные нормативным документом на изделие.

Сварные соединения чугуна, выполненные дуговой сваркой, подвергают визуальному контролю с применением луп или увеличительных стекол с двух-пятикратным увеличением. При визуальном контроле выявляют дефекты, выходящие на поверхность: трещины, поры, подрезы, непровары. Волосовидные трещины, трудно выявляемые визуально, обнаруживают методом цветной дефектоскопии в соответствии с ГОСТ 3242.

Контроль качества сварных швов допускается осуществлять растяжением до разрушения образцов-«свидетелей», вырезанных поперек шва по ГОСТ 6996 из сваренных стыковых соединений чугуна, из которого изготовлены изделия, и по технологии сварки этих изделий.

Внутренние дефекты: трещины, поры, шлаковые включения, непровары и др. — при толщине металла до 250 мм могут выявляться радиационным методом (рентгеновскими или g-лучами) в соответствии с ГОСТ 3242.

В зависимости от назначения свариваемых изделий и условий их эксплуатации установлены два уровня требований к их качеству.

Первый уровень: механические свойства металла шва и околошовной зоны (временное сопротивление разрыву, относительное удлинение) должны быть не хуже соответствующих механических свойств чугуна, из которого изготовлены свариваемые детали. Металл шва (наплавленный металл) должен обрабатываться режущим инструментом. Наличие трещин и пор недопустимо.

Второй уровень: механические свойства металла шва и околошовной зоны могут быть на 25 % хуже соответствующих механических свойств основного металла, наплавленный металл должен обрабатываться режущим инструментом. Наличие трещин и сквозных пор недопустимо. Допустимые дефекты устанавливают в НД на изделия из чугуна.

Требования к декоративной заварке поверхностных дефектов настоящим стандартом не устанавливаются, если требования к ним ниже, чем к конструктивным сварным соединениям.
5.9 Требования к маркировке продукции

Маркировка на литосварных изделиях из чугуна по НД на продукцию.
5.10 Требования к упаковке, транспортированию и хранению продукции

5.10.1 Требования к упаковке и транспортированию

Требования к упаковке и транспортированию отливок, заготовок и сварочных материалов устанавливают в НД на соответствующий вид продукции.

5.10.2 Требования к хранению

Требования к хранению отливок, заготовок и сварочных материалов устанавливают в НД на соответствующий вид продукции.
5.11 Требования безопасности

Санитарно-гигиенические условия на участках дуговой сварки чугунов в части требований к производственным помещениям, оборудованию, приспособлениям, отоплению, вентиляции и освещению должны удовлетворять Санитарным правилам при сварке, наплавке и резке металлов №1009.

Сварочные работы следует выполнять в соответствии с требованиями настоящего стандарта, ГОСТ 12.3.003, ГОСТ 12.3.004, ГОСТ 12.3.009, Правил пожарной безопасности при проведении сварочных и других огневых работ на объектах народного хозяйства и Правил технической эксплуатации электроустановок потребителей и Правил техники безопасности при эксплуатации электроустановок потребителей.

Содержание вредных веществ в воздухе рабочей зоны, образующихся при дуговой сварке чугуна, должно соответствовать требованиям ГОСТ 12.1.005. Если система вентиляции не обеспечивает требуемого качества воздушной среды в рабочей зоне сварки, то необходимо применять средства индивидуальной защиты органов дыхания согласно требованиям ГОСТ 12.4.034.

При контроле за состоянием воздушной среды на рабочих местах необходимо проводить определение содержания сварочного аэрозоля с последующим определением в его составе растворимых, нерастворимых и адсорбированных фторидов, никеля, хрома, марганца, меди, кремния, железа и их соединений, а в газовой фазе — HF, SiF4, CO, О3 и оксидов азота (в пересчете на N2О5).

При работе в условиях запыленности сварщики должны применять противопылевые респираторы ШБ-1 «Лепесток» по ГОСТ 12.4.028.

Для защиты органов зрения, работающих от излучений сварочной дуги в видимой, ультрафиолетовой и инфракрасной областях, следует применять щитки сварщика по ГОСТ 12.4.035.

Средства защиты от теплового (инфракрасного) излучения должны соответствовать требованиям ГОСТ 12.4.123.

Спецодежда и обувь для сварщиков должны надежно защищать их от искр и брызг расплавленного металла, вредных излучений, влаги и других факторов производственной среды по ГОСТ 12.3.002.

Для защиты рук сварщиков следует обеспечивать рукавицами или перчатками, изготовленными из стойких против брызг материалов, с низкой теплопроводностью.

При выполнении сварочных работ в условиях повышенной опасности поражения электрическим током сварщиков, кроме спецодежды, следует обеспечивать диэлектрическими перчатками, галошами и ковриками.

При сварке крупногабаритных чугунных отливок с предварительным подогревом необходимо применять теплоизолирующие покрывала и осуществлять экранирование рабочей зоны сварщика.

Средства индивидуальной защиты работающих должны подвергаться периодическим контрольным осмотрам и проверкам в сроки, установленные НД.

Рабочие, связанные с дуговой сваркой чугуна, должны проходить предварительные и периодические медицинские осмотры не реже одного раза в год.
5.12. Требования к обеспечению охраны окружающей среды

Для охраны окружающей среды при дуговой сварке чугуна следует применять местные отсосы, удаляющие сварочный аэрозоль непосредственно из зоны горения дуги, и горелки для механизированной дуговой сварки со встроенными отсосами сварочного аэрозоля.

Твердая составляющая сварочного аэрозоля, образующегося при дуговой сварке чугуна, должна осаждаться на фильтрах очистки в системах вентиляции. Для защиты атмосферного воздуха от загрязнений вредными веществами, образующимися при выполнении сварочных работ, должны быть предусмотрены мероприятия в соответствии с требованиями ГОСТ 17.2.3.02.
5.13 Требования к квалификации производственного персонала

К выполнению работ по дуговой сварке конструкционных чугунов допускаются сварщики, прошедшие курс теоретического и практического обучения и аттестованные в соответствии с требованиями Правил аттестации сварщиков с присвоением квалификационного разряда не ниже IV для выполнения ручной дуговой сварки и не ниже III для выполнения механизированной сварки.